Consider the following function
n = 200000`200;
k = 2 n - 50`200;
μ = 10`200^-5;
ν = 10`200^-5;
qhat = k/(2 n);
fun[s_] :=
Log[(E^(4 n qhat s) (1 - qhat)^(-1 + 4 n μ) qhat^(-1 + 4 n ν))/
NIntegrate[ E^(4 n qhat s) (1 - qhat)^(-1 + 4 n μ) qhat^(-1 + 4 n ν),
{qhat, 1/(4 n + 1), 1 - 1/(4 n + 1)}, MaxRecursion -> 12]]
I can Plot my function in order to estimate the maximum
Plot[fun[s], {s, 0, 0.2}, AxesLabel -> {"s", "P(qhat | s)"},
PlotRange -> All]

The maximum seems to be around 0.075. Let's calculate it:
FindMaximum[fun[s], {s, 0.075}, MaxIterations -> 100]
The integrand [...] has evaluated to non-numerical values for all sampling points in the region with boundaries
Why can't I estimate the maximum with FindMaximum?
NMaximize[fun[s],s]doesn't work either. It returns the same error message thanFindMaximum– Remi.b Jan 21 '15 at 19:08