Related post Find the eigenvector associated with the smallest eigenvalue, not smallest in magnitude
I tried to find the smallest eigenvalue for a generalized eigenvalue problem A c= \lambda B c (the default option is by absolute value) by
a = {{1, 2, 0}, {2, 5, 3}, {0, 3, 9}}; b = {{1, 5, 3}, {5, 2, 0}, {3, 5, 0}};
n = 5; dimension = 3; Eigenvalues[N[{a, b}], 3]
-n + Eigenvalues[ N[{ a + n IdentityMatrix[dimension], b + n IdentityMatrix[dimension] }, 32 ] ]
It does not work. How to find smallest eigenvalue for a generalized eigenvalue problem?
P.S. In my case (before shifting N* Identity matrix), all eigenvalues are real.