I have a system of parametric equations (with a total number of 8). I tried to solve this system by using Solve. I have not received an answer after about 4 hours!
Is there a way to solve this equation system in a reasonable time?
bc1 = Subscript[C, 5] + (
2 Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) (Sqrt[A] Subscript[C, 2] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) + (Sqrt[A] Subscript[
B, ges] (Subscript[C, 1] + Subscript[C, 3] + Subscript[C,
4]) + (Subscript[C, 1] - Subscript[C, 3] - Subscript[C,
4]) Subscript[p, 1]) Subscript[p, 2]))/(Sqrt[A] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p, 2]);
bc2 = 1/2 (-((2 q)/Subscript[NF, o]) + 1/(Sqrt[A] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p, 2])
4 Subscript[B,
s] (Subscript[B, o] + Subscript[B,
u]) ((Sqrt[A] Subscript[B, ges] + Subscript[p,
1]) (A Subscript[B, ges] Subscript[C, 2] -
Sqrt[A] Subscript[C, 2] Subscript[p, 1] +
Subscript[C, 1] Subscript[p, 2])
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\) + (Subscript[C, 3] +
Subscript[C, 4]) (Sqrt[A] Subscript[B, ges] - Subscript[p,
1]) Subscript[p, 2]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)));
bc3 = (-A^(3/2)
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) (A^(
3/2) (Subscript[C, 7] - Subscript[C, 8]) Subscript[p, 2] +
Sqrt[A] Subscript[B,
s] (-Subscript[C, 7] + Subscript[C, 8]) Subscript[p, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\) + 2
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
2 Sqrt[A] Subscript[B, ges]
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[p,
2] ((Subscript[C, 3] + Subscript[C, 4]) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) + Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))) +
Subscript[p,
1] (A Subscript[C, 7] Subscript[p, 1] Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
A Subscript[C, 8] Subscript[p, 1] Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) + 2
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) (Sqrt[A] Subscript[C, 2] Subscript[p, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
Subscript[p,
2] ((Subscript[C, 3] + Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) + Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (-A + Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))))))/(Sqrt[A] Sqrt[
Subscript[B, s]] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)));
bc4 = Subscript[C, 5] + L Subscript[C, 6] +
1/2 (-((L^2 q)/Subscript[NF, o]) + (
4 E^(-L Subscript[p, 3]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 1])/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] - Subscript[p, 1])) + (
4 E^(-L Subscript[p, 4]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 3])/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] + Subscript[p, 1])) + (
4 E^(L Subscript[p, 4]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 4])/(
A Subscript[B, ges] + Sqrt[A] Subscript[p, 1]) + (
4 E^(L Subscript[p, 3]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 2])/
Subscript[p, 2]);
bc5 = 1/2 (-((2 q)/Subscript[NF, o]) + (
4 E^(-L Subscript[p, 3]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] - Subscript[p, 1])) + (
4 E^(L Subscript[p, 3]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))/Subscript[p, 2] + (
4 E^(-L Subscript[p, 4]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 3]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] + Subscript[p, 1])) + (
4 E^(L Subscript[p, 4]) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 4]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))/(
A Subscript[B, ges] + Sqrt[A] Subscript[p, 1]));
bc6 = (E^(-L (Sqrt[A]/Sqrt[Subscript[B, s]] + Subscript[p, 3] +
Subscript[p, 4])) (-A^(3/2) E^(
L (Subscript[p, 3] + Subscript[p, 4]))
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) (2 E^(
L (Sqrt[A]/Sqrt[Subscript[B, s]] + Subscript[p, 3]))
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) +
Sqrt[A] (Subscript[C, 7] -
E^((2 Sqrt[A] L)/Sqrt[Subscript[B, s]]) Subscript[C,
8]) Subscript[p, 2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
2 Sqrt[A] E^((Sqrt[A] L)/Sqrt[Subscript[B, s]]) Subscript[B,
ges]
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[p,
2] (E^(L Subscript[p,
3]) (Subscript[C, 3] +
E^(2 L Subscript[p, 4]) Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) +
E^(L Subscript[p, 4]) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))) +
Subscript[p,
1] (A E^(
L (Subscript[p, 3] + Subscript[p, 4])) (Subscript[C, 7] -
E^((2 Sqrt[A] L)/Sqrt[Subscript[B, s]]) Subscript[C,
8]) Subscript[p, 1] Subscript[p, 2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
2 E^(L (Sqrt[A]/Sqrt[Subscript[B, s]] + Subscript[p, 3]))
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B,
u]) (Sqrt[A] E^(L (Subscript[p, 3] + Subscript[p, 4]))
Subscript[C, 2] Subscript[p, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
Subscript[p,
2] ((Subscript[C, 3] +
E^(2 L Subscript[p, 4]) Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) -
E^(L (-Subscript[p, 3] + Subscript[p, 4])) Subscript[
C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)))))))/(Sqrt[A] Sqrt[
Subscript[B, s]] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)));
bc7 = -(1/
2) (Subscript[B, o] + Subscript[B,
u]) (-((4 Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] - Subscript[p, 1]))) + (
4 Subscript[B, s] (Subscript[B, o] + Subscript[B, u]) Subscript[
C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\))/Subscript[p, 2] - (
4 Subscript[B, s] (Subscript[B, o] + Subscript[B, u]) Subscript[
C, 3]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(3\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] + Subscript[p, 1])) + (
4 Subscript[B, s] (Subscript[B, o] + Subscript[B, u]) Subscript[
C, 4]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(3\)]\))/(
A Subscript[B, ges] + Sqrt[A] Subscript[p, 1])) +
A (Subscript[C, 7] + Subscript[C, 8] - (2
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(2\)]\) (Subscript[B, o] +
Subscript[B, u]) (A^2
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
A Subscript[B, ges] Subscript[p,
2] ((Subscript[C, 3] - Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(3\)]\) + Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))) -
Sqrt[A] Subscript[p,
1] (Sqrt[A] Subscript[C, 2] Subscript[p, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
Subscript[p,
2] (-(Subscript[C, 3] - Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(3\)]\) + Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(3\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))))))/(A (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))));
bc8 = -(1/2) Subscript[B,
ges] (-((2 q)/Subscript[NF, o]) + (
4 E^(-((L Subscript[p, 3])/2)) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] - Subscript[p, 1])) + (
4 E^((L Subscript[p, 3])/2) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))/Subscript[p, 2] + (
4 E^(-((L Subscript[p, 4])/2)) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 3]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] + Subscript[p, 1])) + (
4 E^((L Subscript[p, 4])/2) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 4]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))/(
A Subscript[B, ges] +
Sqrt[A] Subscript[p, 1])) + (E^(-(1/2)
L (Sqrt[A]/Sqrt[Subscript[B, s]] + Subscript[p, 3] +
Subscript[p, 4])) Sqrt[Subscript[B,
s]] (-A^(3/2) E^(1/2 L (Subscript[p, 3] + Subscript[p, 4]))
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) (2 E^(
1/2 L (Sqrt[A]/Sqrt[Subscript[B, s]] + Subscript[p, 3]))
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[C, 2]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) +
Sqrt[A] Subscript[C, 7] Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) -
Sqrt[A] E^((Sqrt[A] L)/Sqrt[Subscript[B, s]]) Subscript[C,
8] Subscript[p, 2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
2 Sqrt[A] E^((Sqrt[A] L)/(2 Sqrt[Subscript[B, s]])) Subscript[
B, ges]
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B, u]) Subscript[p,
2] (E^((L Subscript[p, 3])/
2) (Subscript[C, 3] +
E^(L Subscript[p, 4]) Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) +
E^((L Subscript[p, 4])/2) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\))) +
Subscript[p,
1] (A E^(1/2 L (Subscript[p, 3] + Subscript[p, 4]))
Subscript[C, 7] Subscript[p, 1] Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) -
A E^(1/2 L ((2 Sqrt[A])/Sqrt[Subscript[B, s]] + Subscript[
p, 3] + Subscript[p, 4])) Subscript[C, 8] Subscript[p,
1] Subscript[p, 2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
2 E^((Sqrt[A] L)/(2 Sqrt[Subscript[B, s]]))
\!\(\*SubsuperscriptBox[\(B\), \(s\), \(5/2\)]\) (Subscript[B, o] +
Subscript[B,
u]) (Sqrt[A] E^(
L Subscript[p, 3] + (L Subscript[p, 4])/2) Subscript[C,
2] Subscript[p, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)) +
Subscript[p,
2] (E^((L Subscript[p, 3])/
2) (Subscript[C, 3] +
E^(L Subscript[p, 4]) Subscript[C, 4]) (A -
Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\))
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(4\)]\) -
E^((L Subscript[p, 4])/2) Subscript[C, 1]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(4\)]\) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)))))))/(Sqrt[A] (A
\!\(\*SubsuperscriptBox[\(B\), \(ges\), \(2\)]\) -
\!\(\*SubsuperscriptBox[\(p\), \(1\), \(2\)]\)) Subscript[p,
2] (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(3\), \(2\)]\)) (A - Subscript[B, s]
\!\(\*SubsuperscriptBox[\(p\), \(4\), \(2\)]\)));
rc8 = 1/8 (2 L^2 q +
4 Subscript[NF,
o] (-2 Subscript[C, 5] - L Subscript[C, 6] - (
4 E^(-((L Subscript[p, 3])/2)) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 1])/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] - Subscript[p, 1])) - (
4 E^(-((L Subscript[p, 4])/2)) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) (Subscript[C, 3] +
E^(L Subscript[p, 4]) Subscript[C, 4]))/(
Sqrt[A] (Sqrt[A] Subscript[B, ges] + Subscript[p, 1])) - (
4 E^((L Subscript[p, 3])/2) Subscript[B,
s] (Subscript[B, o] + Subscript[B, u]) Subscript[C, 2])/
Subscript[p, 2]));
Solve[{bc1 == 0, bc2 == 0, bc3 == 0, bc4 == 0, bc5 == 0, bc6 == 0,
bc7 == q*L/2, bc8 == rc8}, {Subscript[C, 1], Subscript[C, 2],
Subscript[C, 3], Subscript[C, 4], Subscript[C, 5], Subscript[C, 6],
Subscript[C, 7], Subscript[C, 8] }]

SubscriptandCin the name of variables, use better x[y] instead of Subscript[x,y] and c[i] instead of C[i] becouse C is reserved symbol – k_v Feb 15 '15 at 17:19/. {Subscript[C, i_] -> c[i], Subscript[A_, B_] -> A[B] }– k_v Feb 15 '15 at 17:24sol=Solve[...]and work then withsol– k_v Feb 18 '15 at 15:54