0

I know that this expression:

-(m-2 r+b^2 (-7 m+6 r)) ((-m+r)^2+b^4 (-2 m+3 r)^2+b^2 (-3 m^2+10 m r-6 r^2))+(1+b^2)^2 m^3 Cos[t]^2

Is equal to this one:

(1-3 b^2)^3 (-m+r)^2 (-m+2 r)+(1+b^2)^2 m^3 (b^2+Cos[t]^2)

I couldn't get Mathematica to reach this simpler later form. FullSimplify and other functions combinations like FullSimplify with PowerExpand didn't work. I even used VOISImplify, and no success. Any thoughts?

Giovanni F.
  • 1,911
  • 13
  • 20

1 Answers1

3
expr = -(m - 2 r + b^2 (-7 m + 6 r)) ((-m + r)^2 + 
      b^4 (-2 m + 3 r)^2 + 
      b^2 (-3 m^2 + 10 m r - 6 r^2)) + (1 + b^2)^2 m^3 Cos[t]^2;

expr2 = (Collect[expr1 /. Cos[t]^2 -> x - b^2, x] // FullSimplify) /. 
  x -> (b^2 + Cos[t]^2)

(-1 + 3 b^2)^3 (m - 2 r) (m - r)^2 + (1 + b^2)^2 m^3 (b^2 + Cos[t]^2)

expr == expr2 // Simplify

True

LeafCount /@ {expr, expr2}

{76, 42}

Bob Hanlon
  • 157,611
  • 7
  • 77
  • 198