Rather uninspiringly but consistent with problematic Abs[x]:
f[x_] := Piecewise[{{x^2 + 3 x, x < 0}, {x^2 - 5 x, x > 0}}]
e.g.
ArcLength[f[x], {x, -2, 2}]
ArcLength[f[x], {x, 0, 2}]
ArcLength[f[x], {x, -2, 0}]
yield respectively,
1/4 (3 Sqrt[10] + 5 Sqrt[26] + ArcSinh[3] + ArcSinh[5])
1/4 (-Sqrt[2] + 5 Sqrt[26] - ArcSinh[1] + ArcSinh[5])
1/4 (Sqrt[2] + 3 Sqrt[10] + ArcSinh[1] + ArcSinh[3])
For fun:
Column[{Plot[f[x], {x, -2, 2}, PlotLabel -> f[x], ImageSize -> 400],
Plot[ArcLength[f[s], {s, -2, u}], {u, -2, 2}, PlotStyle -> Red,
PlotLabel -> ArcLength[f[x], {x, -2, s}], ImageSize -> 400]},
Frame -> All]

$Assumptions = {x ∈ Reals};might help here. – David Zhang Apr 08 '15 at 00:20