This s not an answer but an extended comment about results with v10.1
$Version
"10.1.0 for Mac OS X x86 (64-bit) (March 24, 2015)"
Integrate[1/(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]
0
Integrate[1./(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]
0
However,NIntegrate gives the a large result in either case with convergence warnings
NIntegrate[1/(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]

3.884415286001312*^12
NIntegrate[1./(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]

3.884415286001312*^12
Integrating over a region,
rgn = ImplicitRegion[
0 <= x <= 1 && 0 <= y <= 1 && 0 <= z <= 1,
{x, y, z}];
Integrate[1/(x y z), Element[{x, y, z}, rgn]]
0
Integrate[1./(x y z), Element[{x, y, z}, rgn]]
3.884415286001312*^12
This is the same result as with NIntegrate; however, without the convergence warning.
Following the advice of @Daniel Lichtblau to use GenerateConditions->True gives mixed results
Integrate[1/(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
GenerateConditions -> True]

Integrate[1/(xyz), {x, 0, 1},
{y, 0, 1}, {z, 0, 1},
GenerateConditions -> True]
Integrate[1./(x y z), {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
GenerateConditions -> True]

1.Integrate[1/(xy*z), {x, 0, 1},
{y, 0, 1}, {z, 0, 1},
GenerateConditions -> True]
Integrate[1/(x y z), Element[{x, y, z}, rgn], GenerateConditions -> True]
Infinity
Integrate[1./(x y z), Element[{x, y, z}, rgn], GenerateConditions -> True]
3.884415286001312*^12
Integrate[1/(x y z), {x, a, 1}, {y, a, 1}, {z, a, 1}, Assumptions -> a \[Element] Reals]you get the following:ConditionalExpression[-Log[a]^3, 0 <= a < 1]Then take the limit as a->0 by doing:Limit[ConditionalExpression[-Log[a]^3, 0 <= a < 1], a -> 0]which gives infinity. Interesting that it gives zero, (Mathematica 10.1 does too) – Histograms May 20 '15 at 21:15GenerateConditionsin multivariate integrals. Setting it explicitly toTruewill help in this case. Some explanation may be found here or here. – Daniel Lichtblau May 20 '15 at 21:26