I was wondering if there is a possible way to still use OrderedQ and get a descending order of permutations: This is Ascending order:
Select[Tuples[{1, 2, 3, 4, 5}, {3}], OrderedQ]
{{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 2, 2},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 3}, {1, 3, 4}, {1, 3, 5},
{1, 4, 4}, {1, 4, 5}, {1, 5, 5}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4},
{2, 2, 5}, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}, {2, 4, 4}, {2, 4, 5},
{2, 5, 5}, {3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 4}, {3, 4, 5},
{3, 5, 5}, {4, 4, 4}, {4, 4, 5}, {4, 5, 5}, {5, 5, 5}
And i need them in Descending order, for eg:
{{3,2,1},{3,1,1},{1,1,1}.. etc}
Please help me :)
Reverseon your output lists? Or usingOrderedQ@Reverse@#&as your test function? – Mr.Wizard May 23 '15 at 12:25Select[Tuples[Reverse@{1, 2, 3, 4, 5}, {3}], GreaterEqual @@ # &]– kglr May 23 '15 at 13:51