r[t_] = Piecewise[{{{7 t, 0, 4 (1 + Cos[ t])},
0 <= t <= π}, {{5 Cos[t - 3 π/2] + 7*π,
3 Sin[t - 3 π/2] + 3, 0}, π < t <=
2 π}, {{7*π + 3*Cos[t - 3 π/2],
2*3 - 3 + 3*Sin[t - 3 π/2], 2/(3 π) (t - 2 π)^2},
2 π < t <= 4 π}, {{7 π - 5 (t - 4 π),
6 + 4 ((t - 4 π)/π)^3,
2 - 1/π t^2 + 10 t - 22 π},
4 π < t <= 5 π}, {{-3 t + 17 π, 10,
2 - 972 π + 540 t - (99 t^2)/π + (6 t^3)/π^2},
5 π < t <= 6 π}, {{-π - 3 Sin[t],
9/40 (1/3 (20 + 18 π) - t)^2, 3 Cos[t] - 1},
6 π < t <=
8 π}, {{-25 π + 25 t - (19 t^2)/(4 π) + t^3/(
4 π^2), -(25/2) (140 - 132 π + 27 π^2) + (
15 (80 - 74 π + 15 π^2) t)/(2 π) - (
3 (180 - 164 π + 33 π^2) t^2)/(
8 π^2) - ((-50 + 45 π - 9 π^2) t^3)/(20 π^3),
1058 - (360 t)/π + (81 t^2)/(2 π^2) - (3 t^3)/(
2 π^3)}, 8 π < t <= 10 π}}];
I have no idea how to put the vectors on the curve, im not sure even if i calculated the right vectors. I found a similar question on this site and used the method I found there, but now im stuck on plotting the vectors. Any help will be greatly appreciated.
Here is the code I used to get the three vectors as well.
uT[t_] := Simplify[r'[t]/Norm[r'[t]], t ∈ Reals]
vN[t_] := Simplify[uT'[t]/Norm[uT'[t]], t ∈ Reals]
vB[t_] := Simplify[Cross[r'[t], r''[t]]/Norm[Cross[r'[t], r''[t]]], t ∈ Reals]
I want to place such vectors at t = 7π/2 and t = 13π/2
