Bug introduced in 9.0 or earlier and fixed in 11.3
Reduce[1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]), x]
the output is unreadable and include the symbol Reduce`CADAlgVar[1].
Bug introduced in 9.0 or earlier and fixed in 11.3
Reduce[1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]), x]
the output is unreadable and include the symbol Reduce`CADAlgVar[1].
Restrict the domain to Reals
$Version
"10.2.0 for Mac OS X x86 (64-bit) (July 7, 2015)"
eqn = 1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]);
sol = Reduce[eqn, x, Reals] // ToRules
{x -> Root[1 - 10*#1^2 - 4*#1^3 + #1^4 + 20*#1^5 + 6*#1^6 - 10*#1^8 - 4*#1^9 + #1^12 & , 4]^2}
eqn /. sol // FullSimplify
True
sol // N
{x -> 0.800116}
eqn /. (sol // N)
True
EDIT: Update for v11.3
$Version
(* "11.3.0 for Mac OS X x86 (64-bit) (March 7, 2018)" *)
eqn = 1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]);
sol1 = Reduce[1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]), x] // ToRules
(* {x -> Root[{-3 + #1^2 &, -2 + #2^2 &, -1 + 5 #3 - 2 #1 #2 #3 + 2 #1 #3^2 -
2 #2 #3^2 + #3^3 &}, {2, 2, 1}]} *)
Verifying,
eqn /. sol1 // RootReduce
(* True *)
Restricting the domain to Reals gives the same result as with the earlier version
sol2 = Reduce[1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]), x, Reals] // ToRules
(* {x -> Root[
1 - 10 #1^2 - 4 #1^3 + #1^4 + 20 #1^5 + 6 #1^6 - 10 #1^8 -
4 #1^9 + #1^12 &, 4]^2} *)
The different Root objects are equivalent
(x /. sol1) == (x /. sol2) // RootReduce
(* True *)
The following works in MMA 11.3.
ToRadicals[Reduce[1/Sqrt[x] == x + 1/(Sqrt[2] + Sqrt[3]), x]]
x == 2/3 (Sqrt[2] - Sqrt[3]) + 1/( 3 (2/(27 - 22 Sqrt[2] + 18 Sqrt[3] + 3 Sqrt[3 (27 - 44 Sqrt[2] + 36 Sqrt[3])]))^(1/3)) + 1/3 (5 - 2 Sqrt[6]) (2/( 27 - 22 Sqrt[2] + 18 Sqrt[3] + 3 Sqrt[3 (27 - 44 Sqrt[2] + 36 Sqrt[3])]))^(1/3)