Using FindAllCrossings from here
norm[x_List] := Sqrt[x.x] (* Norm[ ] is always problematic *)
r[t_] := {3 Cos[3.3 π t], Sin[4 π t] + 4 t};
n[t_] := norm[r'[t] r''[t]]/norm[r'[t]];
(* now we find the extremes using the derivative and get the global max *)
max = Last@SortBy[{#, n@#} & /@ FindAllCrossings[n'[t], {t, 0, 1}], Last]
Plot[n[t], {t, 0, 1}, Epilog -> {PointSize[Large], Red, Point@max}]

These are all the extrems:
ms = SortBy[{#, n@#} & /@ FindAllCrossings[n'[t], {t, 0, 1}], -Last[#] &]
{{0.636971, 300.935}, {0.33428, 300.114}, {0.871933, 289.731},
{0.259015, 246.272}, {0.567049, 224.732}, {0.0605467, 221.359},
{0.95363, 209.144}, {0.605623, 153.361}, {0.910354, 143.132},
{0.302482, 97.1912}, {0.456713, 35.638}, {0.757384, 3.91173}, {0.151483, 0.516416}}
pt = {#, n@#, Sign[n''@#]} & /@ FindAllCrossings[n'[t], {t, 0, 1}]
Plot[n[t], {t, 0, 1},
Epilog -> {PointSize[Large],
Red, Point@Cases[pt, {x__, 1} :> {x}],
Green, Point@Cases[pt, {x__, -1} :> {x}]}]

FindMaximum[n[t], {t, .075}]. I get{221.359, {t ->0.0605467}}, which appears to be the first maximum ofn[t]to the right of zero. – m_goldberg Sep 17 '15 at 01:43