Interesting exercise. It can be done with some preparatory steps in a few seconds of computing time.
The OP asks for the integral
q := Integrate[h, {ωp, -∞, ∞},
Assumptions -> {γ > 0, ω > 0}, PrincipalValue -> True]
where the integrand is
h = 1/((1 - 4 ωp^2 -
4 I ωp γ) (1 - ωp^2 -
2 I ωp γ)^2 (ωp - ω));
Compact answer
Letting
g = 1/((x - a) (x - b) (x - c) (x - d)^2 (x - f)^2);
rep = Thread[{b, c, d, d, f, f, a} -> (ωp /. Solve[0 == 1/h, ωp])];
we have
Simplify[h == (-1/4) g /. rep /. x -> ωp]
(*
Out[145]= True
*)
and the integral becomes
q = Timing[(-1/4) Simplify[
Plus @@ Limit[
Integrate[List @@ Apart[g], {x, -z, z}, PrincipalValue -> True,
Assumptions -> {z > 0, a ∈ Reals, Im[b] != 0, Im[c] != 0,
Im[d] != 0, Im[f] != 0}], z -> ∞] /. rep]]
{14.2116911`, -((
2 π)/((I + 4 γ ω - 4 I ω^2) (2 γ ω -
I (-1 + ω^2))^2))}
and it is done in less that 15 seconds (Version 10.1. on a normal Windows Laptop).
Detailed derivation
We show here that the integral can in fact be calculated refraining from the use of evaluating residues.
The main idea is to understand the integral as a limit z->∞ of the finite integral between -z and z.
Also, an explicit partial fraction decomposition using Apart[] helps reduce the computing time.
Determining explcitly the roots of the denominator
sol = Solve[0 == 1/h, ωp]
(*
Out[70]= {{ωp -> 1/2 (-I γ - Sqrt[1 - γ^2])}, {ωp ->
1/2 (-I γ + Sqrt[1 - γ^2])}, {ωp -> -I γ -
I Sqrt[-1 + γ^2]}, {ωp -> -I γ -
I Sqrt[-1 + γ^2]}, {ωp -> -I γ +
I Sqrt[-1 + γ^2]}, {ωp -> -I γ +
I Sqrt[-1 + γ^2]}, {ωp -> ω}}
*)
Letting
p = ωp /. sol
(*
Out[88]= {1/2 (-I γ - Sqrt[1 - γ^2]),
1/2 (-I γ + Sqrt[1 - γ^2]), -I γ -
I Sqrt[-1 + γ^2], -I γ -
I Sqrt[-1 + γ^2], -I γ +
I Sqrt[-1 + γ^2], -I γ + I Sqrt[-1 + γ^2], ω}
*)
We find
Simplify[4 Times @@ (ωp - p) == -1/h]
(*
Out[89]= True
*)
Assuming general parameters defined in this replacement
rep = Thread[{b, c, d, d, f, f, a} -> p]
(*
Out[90]= {b -> 1/2 (-I γ - Sqrt[1 - γ^2]),
c -> 1/2 (-I γ + Sqrt[1 - γ^2]),
d -> -I γ - I Sqrt[-1 + γ^2],
d -> -I γ - I Sqrt[-1 + γ^2],
f -> -I γ + I Sqrt[-1 + γ^2],
f -> -I γ + I Sqrt[-1 + γ^2], a -> ω}
*)
We shall consider the integral of the more general expression for the integrand (for ease of reading we let ωp -> x)
g = 1/((x - a) (x - b) (x - c) (x - d)^2 (x - f)^2);
g /. rep /. x -> ωp // Simplify
(*
Out[97]= -(4/((ω - ωp) (-1 +
2 I γ ωp + ωp^2)^2 (-1 + 4 I γ ωp +
4 ωp^2)))
*)
The integral over g is then -4 times the integral in question, i.e. q = -g/4.
Before taking the integral It helps decomposing g into partial fractions, and splitting it into a list
ga = List @@ Apart[g]
(*
Out[107]= {1/((a - b) (a - c) (a - d)^2 (a - f)^2 (-a + x)), -(
1/((a - b) (b - c) (b - d)^2 (b - f)^2 (-b + x))), -(
1/((a - c) (-b + c) (c - d)^2 (c - f)^2 (-c + x))), -(
1/((a - d) (-b + d) (-c + d) (d - f)^2 (-d + x)^2)), (
2 a b c - 3 a b d - 3 a c d - 3 b c d + 4 a d^2 + 4 b d^2 + 4 c d^2 - 5 d^3 +
a b f + a c f + b c f - 2 a d f - 2 b d f - 2 c d f +
3 d^2 f)/((a - d)^2 (-b + d)^2 (-c + d)^2 (d - f)^3 (-d + x)), -(
1/((b - f) (-a + f) (-c + f) (-d + f)^2 (-f + x)^2)), (
2 a b c + a b d + a c d + b c d - 3 a b f - 3 a c f - 3 b c f - 2 a d f -
2 b d f - 2 c d f + 4 a f^2 + 4 b f^2 + 4 c f^2 + 3 d f^2 -
5 f^3)/((a - f)^2 (-b + f)^2 (-c + f)^2 (-d + f)^3 (-f + x))}
*)
Now the integral over the list ga is quickly calculated
gai = Timing[
Integrate[ga, {x, -z, z}, PrincipalValue -> True,
Assumptions -> {z > 0, a ∈ Reals, Im[b] != 0, Im[c] != 0,
Im[d] != 0, Im[f] != 0}]]
(*
Out[110]= {15.8029, {(-Log[-a - z] +
Log[-a + z])/((a - b) (a - c) (a - d)^2 (a - f)^2), (-Log[b - z] +
Log[b + z])/((a - b) (b - c) (b - d)^2 (b - f)^2), (-Log[c - z] +
Log[c + z])/((a - c) (-b + c) (c - d)^2 (c - f)^2), -((
2 z)/((a - d) (-b + d) (-c + d) (d - f)^2 (d^2 -
z^2))), ((d (-3 b c + 4 (b + c) d - 5 d^2) + (b c - 2 (b + c) d +
3 d^2) f +
a (2 b c - 3 b d - 3 c d + 4 d^2 + (b + c - 2 d) f)) (Log[d - z] -
Log[d + z]))/((a - d)^2 (b - d)^2 (c - d)^2 (d - f)^3), -((
2 z)/((b - f) (d - f)^2 (-a + f) (-c + f) (f^2 - z^2))), ((2 a b c +
a b d + a c d +
b c d - (3 b c + 3 a (b + c) + 2 (a + b + c) d) f + (4 (a + b + c) +
3 d) f^2 - 5 f^3) (Log[f - z] - Log[f + z]))/((a - f)^2 (b - f)^2 (c -
f)^2 (-d + f)^3)}}
*)
Now taking the limit z->∞
gail = Timing[Limit[gi[[2]], z -> ∞]]
(*
Out[111]= {0.265202, {-((I π)/((a - b) (a - c) (a - d)^2 (a - f)^2)), -((
I π)/((a - b) (b - c) (b - d)^2 (b - f)^2)), -((
I π)/((a - c) (-b + c) (c - d)^2 (c - f)^2)), 0, (
I (d (-3 b c + 4 (b + c) d - 5 d^2) + (b c - 2 (b + c) d + 3 d^2) f +
a (2 b c - 3 b d - 3 c d + 4 d^2 + (b + c - 2 d) f)) π)/((a -
d)^2 (b - d)^2 (c - d)^2 (d - f)^3), 0, (
I (2 a b c + a b d + a c d +
b c d - (3 b c + 3 a (b + c) + 2 (a + b + c) d) f + (4 (a + b + c) +
3 d) f^2 - 5 f^3) π)/((a - f)^2 (b - f)^2 (c - f)^2 (-d + f)^3)}}
*)
and summing up the terms
gs = Plus @@ gail[[2]]
(*
Out[117]= -((I π)/((a - b) (a - c) (a - d)^2 (a - f)^2)) - (
I π)/((a - b) (b - c) (b - d)^2 (b - f)^2) - (
I π)/((a - c) (-b + c) (c - d)^2 (c - f)^2) + (
I (2 a b c + a b d + a c d +
b c d - (3 b c + 3 a (b + c) + 2 (a + b + c) d) f + (4 (a + b + c) +
3 d) f^2 - 5 f^3) π)/((a - f)^2 (b - f)^2 (c - f)^2 (-d + f)^3) + (
I (d (-3 b c + 4 (b + c) d - 5 d^2) + (b c - 2 (b + c) d + 3 d^2) f +
a (2 b c - 3 b d - 3 c d + 4 d^2 + (b + c - 2 d) f)) π)/((a -
d)^2 (b - d)^2 (c - d)^2 (d - f)^3)
*)
Replacing the parameters
gsrep = gs /. rep // Simplify
(*
Out[120]= (8 π)/((I + 4 γ ω - 4 I ω^2) (2 γ ω -
I (-1 + ω^2))^2)
*)
Hence the original integral is simply
q = -1/4 gsrep
$$q = -\frac{2 \pi }{\left(4 \gamma \omega -4 i \omega ^2+i\right) \left(2 \gamma \omega -i \left(\omega ^2-1\right)\right)^2}$$
Done.
ωp>4096comes from an internalLimitmaking an assumption, if it's any helpTrace-ing down the problem...I'll probably delete this, as it probably won't prove to be much help. But it's all the time I got right now. :) – Michael E2 Oct 15 '15 at 22:56Tracebut did not learn much. Thanks for the suggestion, though. – bbgodfrey Oct 16 '15 at 01:48Integratemistakenly concludes that all the roots of the denominator lie on the real line: http://i.stack.imgur.com/peMwW.png -- no time to investigate further right now – Michael E2 Oct 16 '15 at 12:56PV limits? I did not obtain them withTrace. You may be correct thatIntegratethinks they are on the real axis, but that would be really strange, because the expressions containI. By the way, I installed 10.3 this morning and shall rerun this calculation with it. Quite slow, though. – bbgodfrey Oct 16 '15 at 15:20Internal`Integrate`debugSwitch. Almost 10MB of output, so beware. (My institution is slow about making available new versions, so no 10.3 for me yet.) – Michael E2 Oct 16 '15 at 17:47ApplyandApartcertainly increase the speed greatly, the key part of your solution (from my perspective) is performing the integral over a finite range and then taking the limit as the domain goes to infinity, because this avoids the spurious error messages. Would you agree that the error messages constitute a bug? – bbgodfrey Oct 19 '15 at 12:28