Along with @J.M.'s superfast solution, and this nice little identity, where for $X_j \text{ iid},$ uniformly distributed on $[0,1],$
$$\dfrac{1}{n!} \left\langle n \atop k \right\rangle = P\left(\sum_{j=1}^{n}X_j\in[k,k+1]\right)$$
we can get eg eulplot[6, 2], eulplot[12, 5]:


eulerian[k_, n_] :=
CoefficientList[(1 - x)^(n + 1) PolyLog[-n, x]/x, x][[k + 1]]
iid[k_, n_] := eulerian[k, n]/n!
eulplot[n_, pt_] := With[{aa = Piecewise[SortBy[(BSplineBasis[n - 1,
x/(n)] // PiecewiseExpand)[[1]], Last@# &]]},
Show[Plot[Evaluate[aa], {x, 0, n}, PlotPoints -> 1000],
Plot[Evaluate[aa[[1, pt + 1]]], {x, pt, pt + 1}, Filling -> Axis,
PlotRange -> {{0, Automatic}, {0, Automatic}}], Frame -> True,
LabelStyle -> Black, PlotLabel -> StringJoin["A=", ToString[
TraditionalForm[HoldForm[CenterDot[(1/n!) ,
AngleBracket[Style[Overscript[Underscript["", pt], n],
ScriptSizeMultipliers -> 1]]]] == iid[pt, n]]]]]]
$$f_{X+Y+Z}(z) = \int_{0}^1 f_{X+Y}(z-y),{\rm d}y = \cases{ \frac{z^2}{2}&$0 \le z\le 1$\cr -\frac 3 2- {z}^{2}+3,z&$1 \le z\le 2$\cr \frac 92-3,z+\frac{z^2}{2}&$2 \le z\leq 3$\cr 0& otherwise}$$
– martin Nov 03 '15 at 21:42f[1] = Integrate[ PDF[UniformDistribution[{0, 1}], z - y], {y, 0, 1}] /. z -> y; f[n_] := Integrate[f[n - 1] /. y -> z - y, {y, 0, 1}] /. z -> y; f[3] // Simplify? – Dr. belisarius Nov 03 '15 at 21:50