Following the suggestion I made in a comment, the integral can be rewritten as the contour integral
$$
I_{3,2} = \frac{1}{2\pi i} \oint \frac{\operatorname{tanh}^3 z}{z^2} \log(-z) \, dz ,
$$
where the clockwise contour tightly encircles the positive real axis, which coincides with the branch cut of the logarithm. The reason that this integral is equivalent is because the branch jump across the real line of $\frac{1}{2\pi i} \log(-z)$ is precisely $1$.
The integrand has poles at all $z=\pm i\pi(k+\frac{1}{2})$, $k=0,1,2,\ldots$. Evaluating the residues we find
\begin{align*}
I_{3,2}
&= \sum_{k=0}^\infty \frac{8\log\pi(k+\frac{1}{2})}{\pi^2 (2k+1)^2} - \frac{96 \log\pi(k+\frac{1}{2})-80}{\pi^4 (2k+1)^4} \\
&= \frac{5}{6} - \gamma - \frac{19 \log 2}{15} + 12 \log A - \log\pi + \frac{90 \zeta'(4)}{\pi^4} \\
&= 1.1547853133231762640590704519415261475352370924508924890\ldots
\end{align*}
The last two lines can be checked with Wolfram Alpha, where $\gamma$ is the Euler-Mascheroni constant, and $A$ is the Glaisher constant.
Edit: Using $\gamma =12\,\log(A)-\log(2\pi)+\frac{6}{\pi^2}\,\zeta'(2)$, this can be simplified to
$$I_{3,2}=\frac{5}{6} - \frac{4\log 2}{15} -\frac{6\zeta'(2)}{\pi^2}+ \frac{90 \zeta'(4)}{\pi^4},$$ that is
$$\boxed{I_{3,2}=\frac{5}{6} - \frac{4\log 2}{15} -\frac{\zeta'(2)}{\zeta(2)}+ \frac{\zeta'(4)}{\zeta(4)}}.
$$ And this form may hint to the existence of similar closed forms for other integrals $I_{n,m}$ with $n+m$ odd.
Edit: Indeed... Numerically, it looks like e.g.
$$ I(5,2)=\frac1{3}\Bigl(\frac{8}{5}-\frac{44}{63}\log2-3\frac{\zeta'(2)}{\zeta(2)} +5 \frac{\zeta'(4)}{\zeta(4)}-2\frac{\zeta'(6)}{\zeta(6)} \Bigr)$$
$$ I(7,2)=\frac1{45}\Bigl(\frac{7943}{420}-\frac{428}{45}\log2- 45\frac{\zeta'(2)}{\zeta(2)}+ 98\frac{\zeta'(4)}{\zeta(4)}- 70\frac{\zeta'(6)}{\zeta(6)}+ 17\frac{\zeta'(8)}{\zeta(8)}\Bigr)$$
$$ I(9,2)=\frac1{315}\Bigl(\frac{71077}{630}-\frac{10196}{165}\log2- 315\frac{\zeta'(2)}{\zeta(2)}+ 818\frac{\zeta'(4)}{\zeta(4)}- 798\frac{\zeta'(6)}{\zeta(6)}+ 357\frac{\zeta'(8)}{\zeta(8)}- 62\frac{\zeta'(10)}{\zeta(10)}\Bigr)$$
$$I(11,2)=\frac1{14175}\Bigl(\frac{2230796}{495}-\frac{10719068}{4095}\log2- 14175\frac{\zeta'(2)}{\zeta(2)}+ 41877\frac{\zeta'(4)}{\zeta(4)}- 50270\frac{\zeta'(6)}{\zeta(6)}+ 31416\frac{\zeta'(8)}{\zeta(8)}- 10230\frac{\zeta'(10)}{\zeta(10)}+1382\frac{\zeta'(12)}{\zeta(12)}\Bigr)$$
$$I(13,2)=\frac1{467775}\Bigl(\frac{270932553}{2002}-\frac{25865068}{315}\log2- 467775\frac{\zeta'(2)}{\zeta(2)}+ 1528371\frac{\zeta'(4)}{\zeta(4)}- 2137564\frac{\zeta'(6)}{\zeta(6)}+ 1672528\frac{\zeta'(8)}{\zeta(8)}- 771342\frac{\zeta'(10)}{\zeta(10)}+197626\frac{\zeta'(12) }{\zeta(12)}-21844\frac{\zeta'(14) }{\zeta(14)}\Bigr)$$
Here the initial denominators are chosen as the least common denominators of the $\frac{\zeta'(2k)}{\zeta(2k)}$ terms, such that inside the big parentheses, we have integer coefficients here. It turns out that the sequence of those denominators, viz. $1, 3, 45, 315, 14175, 467775$, coincides up to signs with A117972, the numerators of the rational numbers $\frac{\pi^{2n}\;\zeta'(-2n)}{\zeta(2n+1)}$.
Moreover, note that the coefficients of the $\frac{\zeta'(2k)}{\zeta(2k)}$ have alternating signs and always sum to 0, meaning that the closed forms can be decomposed into terms $\frac{\zeta'(2k)}{\zeta(2k)}-\frac{\zeta'(2k-2)}{\zeta(2k-2)}$, which are thus "exponential periods".
Further, the numerators of the $\frac{\zeta'(2n)}{\zeta(2n)}$ term of $I_{2n-1,2}$, viz. $1, -2, 17, -62, 1382, -21844$, coincide with A002430, the numerators of the Taylor series for $\tanh(x)$, which are also closely related to the rational values $\zeta(1-2n)$. All this seems rather interesting.
$I_{8,2} =\frac1{ 105}( 352 e_3- 1232 e_5+ 1680 e_7- 840 e_9)
$ $I_{10,2} =\frac1{ 945}( 3378 e_3- 14360 e_5+ 27090 e_7- 25200 e_9+ 9450 e_{11})
$ $I_{12,2}=\frac1{ 51975}( 195240 e_3- 957308 e_5+ 2244000 e_7- 2938320 e_9+ 2079000 e_{11}- 623700 e_{13}
$ $I_{14,2}=\frac1{ 675675}( 2642070 e_3- 14482832 e_5+ 39859820 e_7- 65745680 e_9+ 66216150 e_{11}- 37837800 e_{13}+9459450 e_{15} )$
– Wolfgang Jun 08 '17 at 12:30