Trying to generalize this answered question based on limited numerical evidence.
Let $E / \mathbb{F}_p : y^2=x^3+2$.
Conjecture 1 Let $p=3a^2+3ab_0+b_0^2$ be prime and $a,b_0$ positive integers.
Let $b=|p+1-\#E(\mathbb{F}_p)|$. For some integer $a$ (not necessarily positive) $p=3a^2+3ab+b^2$.
In some non-rigorous sense if $p=3a^2+3ab+b^2$ then $b=|p+1-\#E(\mathbb{F}_p)|$.
Conjecture 2 Let $p=27a^2+27ab+7b^2$ be prime and $a,b$ positive integers. Then $b=|p+1-\#E(\mathbb{F}_p)|$. If the representation of $p$ in this form is not unique the conjecture is false (or possibly proceed as in Conjecture 1).
Example sage session:
sage: b=11;a=2^100+28;p=27*a^2+27*a*b+7*b^2;Kp=GF(p);E=EllipticCurve([Kp(0),Kp(2)])
sage: b2=abs(p+1-E.order());b==b2
True