0

Let $k_1,k_2,\cdots,k_n,\cdots$ be a sequence of known positive numbers. Define $$ a_1:=k_1,\\ a_2:=C_2^2k_2+C_2^1k_1a_1,\\ a_3:=C_3^3k_3+C_3^2k_2a_1+C_3^1k_1a_2,\\ a_4:=C_4^4k_4+C_4^3k_3a_1+C_4^2k_2a_2+C_4^1k_1a_3,\\ \cdots\\ a_n:=C_n^nk_n+C_n^{n-1}k_{n-1}a_1+C_n^{n-2}k_{n-2}a_2+\cdots+C_n^1k_1a_{n-1}. $$ What is the general term formula for $a_n$?

YCor
  • 60,149
  • 4
    Let $A(x) = \sum_{n=0}^\infty a_n x^n/n!$, where $a_0=1$, and let $K(x) = \sum_{n=1}^\infty k_n x^n/n!$. Then $A(x) = 1/(1-K(x))$. – Ira Gessel May 15 '19 at 21:33
  • Could you please provide more details? I still can not get the general formula for $a_n$. Thank you very much! – Wenguang Zhao May 16 '19 at 04:22
  • Expand $1/(1-K(x))= \sum_n K(x)^n$ by the multinomial theorem. See my answer to https://mathoverflow.net/questions/53384/power-series-of-the-reciprocal-does-a-recursive-formula-exist-for-the-coeffic/53407#53407. – Ira Gessel May 16 '19 at 05:10
  • Thanks very much! – Wenguang Zhao May 16 '19 at 06:21

0 Answers0