Are there any(other than the full complex/1-case)? Is there a name for this ($k$-edge-regular I call it)?
Thanks.
Are there any(other than the full complex/1-case)? Is there a name for this ($k$-edge-regular I call it)?
Thanks.
There are many such examples. If d=2 (plus some connectivity) those are called pseudomanifolds, so there are many of those, and there are many examples for larger values of d. When every set of size k is a k-edge these are designs.
I have looked for such construction with 5 vertices(and less). There were none. But it is possible with 6. Here are possible lists of triplets, as returned by Wolfram Mathematica.
{{{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}
, {2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}, {{1, 2, 3}, {1, 2,4}
, {1, 3, 6}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 6}, {2, 5, 6}
, {3, 4, 5}, {3, 4, 6}}, {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4,6}
, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}
}, {{1, 2, 3}, {1, 2, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {2, 3,4}
, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 5, 6}}, {{1, 2, 3}, {1, 2, 6}
, {1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 5}, {2, 4, 6}
, {3, 4, 6}, {3, 5, 6}}, {{1, 2, 3}, {1, 2, 6}, {1, 3, 5}, {1,4, 5}
, {1, 4, 6}, {2, 3, 4}, {2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}
}, {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 6}, {1, 5, 6}, {2,3, 5}
, {2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6}}, {{1, 2, 4}
, {1, 2, 5}, {1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 3, 4}, {2, 3, 6}
, {2, 5, 6}, {3, 4, 5}, {4, 5, 6}}, {{1, 2, 4}, {1, 2, 6}, {1, 3,4}
, {1, 3, 5}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {3, 4, 6}
, {4, 5, 6}}, {{1, 2, 4}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4,5}
, {2, 3, 4}, {2, 3, 5}, {2, 5, 6}, {3, 4, 6}, {4, 5, 6}}, {{1, 2, 5}
, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 4, 6}, {2, 3, 4}, {2, 3, 6}
, {2, 4, 5}, {3, 5, 6}, {4, 5, 6}}, {{1, 2, 5}, {1, 2, 6}, {1,3, 4}
, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {3, 5, 6}
, {4, 5, 6}}, {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1,3, 4}
, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}
, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}
, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}}
Also, Conlon's hypergraph construction satisfies it: