3

One formulation of the abc-conjecture is:

$$\forall a,b \in \mathbb{N}: \frac{a+b}{\gcd(a,b)}< \operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2 $$

Let us define:

$$K(a,b) := \frac{2(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} $$

I have checked in Sagemath up to $n=100$ that the matrix

$$(K(i,j))_{1 \le i,j \le n} \text{ is positive definite }$$

and up to $1\le a,b \le 100$ that :

$$K(a,b)\le 1$$

In the Encyclopedia of Distances the word "similarity" is described as:

A similarity $s:X\times X \rightarrow \mathbb{R}$ is defined in the Encyclopedia of Distances as:

  1. $s(x,y) \ge 0 \forall x,y \in X$

  2. $s(x,y) = s(y,x) \forall x,y \in X$

  3. $s(x,y) \le s(x,x) \forall x,x \in X$

  4. $s(x,y) = s(x,x) \iff x=y$

So one possible formulation of the empirical observation above might be:

$$K \text{ is a positive definite kernel and a similarity function with } K(a,a)=1$$

From this formulation the abc conjecture in the variant above follows, because:

$$K(a,b) \le K(a,a)=1 \rightarrow \frac{(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \le \frac{1}{2} < 1$$

Since in the definition of the similarity function, some of the properties are easy to prove for $K$ such as 1. and 2. and from 3. follows abc, I am asking if it is possible to prove $\require{enclose}\enclose{horizontalstrike}{\text{ property 4. and / or}}$ that $K$ is positive definite function?

Thanks for your help.

Edit: I think that $4.$ can be proved by considering that if $K(x,y)=1$ and assuming there exists a prime $p$ which divides $x$ but not $y$, leads to a contradiction.

Second edit: The abc conjecture (in the version above) would follow, if one could prove that the function

$$K(a,b) := \frac{2(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} $$

is positive definite over the natural numbers.

Proof: If $K$ is a positive definite function over the natural numbers, then by the Moore-Aronszajn theroem , there exists a Hilbert space $H$ and a feature mapping $\phi: \mathbb{N} \rightarrow H$ such that:

$$K(a,b) = \left < \phi(a),\phi(b) \right >_{H}$$

But by Cauchy-Schwarz inequality we get:

$$K(a,b) = |K(a,b)| = |\left < \phi(a),\phi(b) \right >_{H}|$$ $$\le |\phi(a)||\phi(b)| = \sqrt{K(a,a)K(b,b)} = \sqrt{1 \cdot 1} = 1$$

But then we get by division of $2$ and application of the last inequality:

$$\frac{(a+b)}{\gcd(a,b)\operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2} \le \frac{1}{2} < 1$$

hence it would follow that: $$\forall a,b \in \mathbb{N}: \frac{a+b}{\gcd(a,b)}< \operatorname{rad}\left ( \frac{ab(a+b)}{\gcd(a,b)^3}\right )^2 $$

Modified question: Is there a way to speed up the computations to try and test if the Gram matrix for $n=1,\cdots,10000$ is positive definite?

Here is my code so far, but it is rather slow:

# inductive cholesky decomposition
def rad(n):
    return prod(prime_divisors(n))

def kk(a,b): return (2(a+b)a1*b1/gcd(a,b))1/rad(ab(a+b)/gcd(a,b)3)*2

def notPositiveDefinite(a,b): return rad(a*b/gcd(a,b))

#kk = notPositiveDefinite

def grammat(kk,n): return matrix([[kk(a,b) for a in range(1,n+1)] for b in range(1,n+1)],ring=QQ)

PHI = dict([])

def phi(n,useN=False): if n in PHI.keys(): return PHI[n]

if n==1:
    if not useN:
        x = vector([sqrt(kk(1,1))])
    else:
        x = vector([sqrt(kk(1,1)+0.0)])
    PHI[n] = x
    return x
else:
    w = CC(n-1)**(-1)*vv(n-1)
    lw = list(w)
    if not useN:
        lw.append(sqrt(kk(n+1,n+1)-w.norm()**2))
    else:
        lw.append(sqrt(kk(n+1,n+1)-w.norm().n()**2).n())
    x = vector(lw)
    PHI[n]= x
    return x

def vv(n): return vector([kk(i,n+1) for i in range(1,n+1)])

CCDict = dict([])

def CC(n): if n in CCDict.keys(): return matrix(CCDict[n]) mm = [] for i in range(1,n+1): vi = list(phi(i)) if len(vi) < n: vi.extend((n-i)*[0]) mm.append(vi) M= matrix(mm) CCDict[n] = mm return M

for n in range(1,200): print(n,all(x in RR for x in phi(n,useN=True))) #print(grammat(kk,n).rational_form())

Comment on code: It is based on inductive Cholesky decomposition as describe below and keeps track in a dictionary if the $\phi(n)$ or $C_n$ have already been computed. It uses float approximation for greater speed and in the last step we check if each component of the vector $\phi(n)$ is a real number. If it is for all $1 \le k \le n$ then we conclude that the Gram matrix of $n$ is positive definite. If it is not, then at least the Gram matrix for $n$ is not positive definite:

inductive Cholesky decomposition to find an embedding $\phi(n)$ for each number $n$:

Equation 1): $$\phi(n+1) = \left(\begin{array}{r} {C_{n}^{-1} v_n} \\ \sqrt{k(n+1,n+1)-{\left| {C_{n}^{-1} v_n} \right|}^{2} } \end{array}\right)$$

Equation 2):

$$v_n = \left(\begin{array}{r} k(1,n+1) \\ k(2,n+1) \\ \cdots\\ k(n,n+1)\\ \end{array}\right)$$

Equation 3): $$C_n = \left(\begin{array}{r} \phi(1)^T \\ \phi(2)^T \\ \cdots\\ \phi(n)^T\\ \end{array}\right)$$

Equation 4): $$\phi(1) := \sqrt{k(1,1)} e_1$$

If we assume that the function $k$ is positive definite, then this inductive method, should give us the vectors $\phi(a),\phi(b)$ such that under the normal inner product we have:

$$k(a,b) = \left < \phi(a), \phi(b) \right > $$

  • 1
    The word "again" in the question refers to the 3 years older question: https://mathoverflow.net/questions/352054/the-abc-conjecture-as-an-inequality-for-inner-products? from me. – mathoverflowUser Jun 24 '23 at 10:13

1 Answers1

4

The conjecture about the positive definiteness of the kernel above is wrong as one has $\det(G_{192})<0$:

def rad(n):
    return prod(prime_divisors(n))

def kk(a,b): return (2(a+b)1/gcd(a,b)1/rad(ab(a+b)/gcd(a,b)3)2)

def grammat(kk,n): return matrix([[kk(a,b) for a in range(1,n+1)] for b in range(1,n+1)])

n=192

print("n = ",n,sign(grammat(kk,n).det()))