I) OP mentions in a comment that his sum should be normalized with a factor $\frac{1}{2N+1}$. Hence OP is considering
$$S_N
~:=~\frac{1}{2N+1}\sum_{-N\leq k,\ell\leq N} e^{-\alpha (k+\ell)^2}
~\stackrel{(3)}{=}~
\frac{1}{2N+1}\sum_{n,m\in\mathbb{Z}}^{-2N\leq n\pm m\leq 2N} e^{-\alpha n^2}$$
$$\tag{1}~=~\sum_{-2N\leq n\leq 2N}\frac{2N-|n|+1}{2N+1} e^{-\alpha n^2}~=~\sum_{-2N\leq n\leq 2N}\left(1-\frac{|n|}{2N+1}\right) e^{-\alpha n^2}, $$
where we have defined
$$\tag{2} n~:=~k+\ell~\in~\mathbb{Z} \quad\text{and}\quad m~:= ~k-\ell~\in~\mathbb{Z},$$
or equivalently,
$$\tag{3} k~=~\frac{n+m}{2} \quad\text{and}\quad \ell~=~\frac{n-m}{2}. $$
II) Now let us analyze the sum (1) further.
For $\alpha \gg 1$, we only need sum the few first terms ($n$ small) in the sum (1).
For $N^{-2}\ll\alpha \ll 1$, we get
$$\tag{4} S_N ~\approx~\int_{-2N}^{2N} \! dx~\left(1-\frac{|x|}{2N+1}\right) e^{-\alpha x^2}~\approx~\sqrt{\frac{\pi}{\alpha}}-\frac{\alpha^{-1}}{2N+1}.$$
For $\alpha=0$, we get
$$\tag{5} S_{N}=\sum_{-2N\leq n\leq 2N}\left(1-\frac{|n|}{2N+1}\right) ~=~4N+1-\frac{2}{2N+1}\sum_{1\leq n\leq 2N}n~=~ 2N+1.$$