I have a problem in Quantum mechanics 1 with Operators. I have to prove the following equation. I tried it for about 4 hours without any result:
Condition: $[[\hat A,\hat B],\hat A]=[[\hat A,\hat B],\hat B]=0$
$$ e^{\hat A} \hat B = (\hat B + [\hat A,\hat B]) e^{\hat A} $$
Info: $e^{\hat A}=\sum\limits_{n=0}^\infty \frac{(\hat A) ^n}{n!}$
Maybe you could help me?
I've done these steps:
$$ [e^{\hat A}, \hat B] = [\hat A,\hat B] e^{\hat A} = e^{\hat A} [\hat A,\hat B] $$
$$ \sum\limits_{n=0}^\infty \left( \frac{(\hat A)^n}{n!} \hat B - \hat B \frac{(\hat A)^n}{n!}\right) = \sum\limits_{n=0}^\infty \left( \frac{(\hat A)^n}{n!} \hat A \hat B - \frac{(\hat A)^n}{n!} \hat B \hat A\right) $$
But now I don't know how to go on...