2

Consider the action function:

$$\mathcal{S}(t)=\int_{t_1}^{t_2}\mathcal{L}(q_i,\dot{q_i},t) dt$$

where $\mathcal{L}$ is the Lagrangian of the system.

The Hamiltonian is defined by the following expression:

$$\mathcal{H(q_i,p_i,t)}=\dot{q_i}p_i-\mathcal{L}(q_i,\dot{q_i},t)$$

So we have,

$$\mathcal{S}(t)=\int_{t_1}^{t_2}\left[\dot{q_i}p_i-\mathcal{H}(q_i,{p_i},t)\right] dt$$

The Hamilton's Priciple says that $\delta\mathcal{S}=0$.

So we have,

$$\delta\mathcal{S}(t)=\int_{t_1}^{t_2}\left[\delta(\dot{q_i}p_i)-\delta\mathcal{H}(q_i,{p_i},t)\right] dt$$

I found on Goldstein 3rd edition that they considered the next step as

$$\delta\mathcal{S}(t)=\int_{t_1}^{t_2}\left(\delta\dot{q_i}p_i+\dot{q_i}\delta p_i- \frac{\partial\mathcal{H}}{\partial q_i}\delta q_i - \frac{\partial\mathcal{H}}{\partial p_i}\delta p_i \right)dt$$

  1. Didn't they miss the $\frac{\partial\mathcal{H}}{\partial t}\delta t$ term resulting from $\delta\mathcal{H}$?

  2. One more question: Is it true that $\frac{d}{dt}(\delta q_i)=\delta \dot{q_i}$?

Qmechanic
  • 201,751

3 Answers3

3
  1. No, there is usually no variation of the independent coordinates (in this case: the time coordinate $t$), when deriving Euler-Lagrange equations. Only the dependent variables (in this case: $q^i(t)$ and $p_i(t)$) are varied.

  2. Yes, $\frac{d}{dt}(\delta q^i)=\delta \dot{q^i}$, see e.g. this Phys.SE post, which also discusses situations, where it's not the case.

Qmechanic
  • 201,751
  • 3
    The Euler-Lagrange eqs. (for OP's last action functional) are still Hamilton's eqs. even if the Hamiltonian depends explicitly on $t$. – Qmechanic Jun 02 '15 at 23:34