11

Consider an observer located at radius $r_o$ from a Schwarzschild black hole of radius $r_s$. The observer may be inside the event horizon ($r_o < r_s$).

Suppose the observer receives a light ray from a direction which is at angle $\alpha$ with respect to the radial direction, which points outward from the black hole.

What is the original, incident angle of the light ray $\varphi$ from infinity? That is, if we were to trace the light ray back through time, which point on the celestial sphere did it come from?

See the diagram below:

enter image description here

According to this source, we have

$$ \varphi = \int_{r_o}^\infty \frac{\mathrm{d}r}{r^2 \sqrt{ \frac{1}{b^2} - \frac{1}{r^2} \left(1-\frac{r_s}{r}\right) }} $$

where $b$ is the impact parameter, which is the distance between the ray at infinity and a ray parallel to it that plunges directly into the black hole. The impact parameter is given here as

$$ b = m c \frac{h}{E} = m c r^2 \frac{\mathrm{d}\varphi}{\mathrm{d}\tau} \frac{1}{mc^2} \frac{\mathrm{d}\tau}{\mathrm{d}t} \left(1 - \frac{r_s}{r}\right)^{-1} = \frac{r^2}{c} \left( 1 - \frac{r_s}{r} \right)^{-1} \frac{\mathrm{d}\varphi}{\mathrm{d}t} $$

taking $r = r_o$. Therefore

$$ \frac{1}{b^2} = \frac{c^2}{r^4} \left( 1 - \frac{r_s}{r} \right)^2 \left( \frac{\mathrm{d}t}{\mathrm{d}\varphi} \right)^2 $$

To find the last term, recall that the metric is given by

$$ 0 = \left( 1- \frac{r_s}{r} \right) c^2 \mathrm{d}t^2 - \left( 1- \frac{r_s}{r} \right)^{-1} \mathrm{d}r^2 - r^2 \mathrm{d}\varphi^2 $$

for a light ray. Dividing by $\mathrm{d}\varphi^2$ yields

\begin{align} 0 &= \left( 1- \frac{r_s}{r} \right) c^2 \left(\frac{\mathrm{d}t}{\mathrm{d}\varphi}\right)^2 - \left( 1- \frac{r_s}{r} \right)^{-1} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 - r^2 \\ \left( 1- \frac{r_s}{r} \right) c^2 \left(\frac{\mathrm{d}t}{\mathrm{d}\varphi}\right)^2 &= \left( 1- \frac{r_s}{r} \right)^{-1} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + r^2 \\ c^2 \left(\frac{\mathrm{d}t}{\mathrm{d}\varphi}\right)^2 &= \left( 1- \frac{r_s}{r} \right)^{-2} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + r^2 \left( 1- \frac{r_s}{r} \right)^{-1} \\ \left(\frac{\mathrm{d}t}{\mathrm{d}\varphi}\right)^2 &= \frac{1}{c^2} \left( 1- \frac{r_s}{r} \right)^{-2} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + \frac{r^2}{c^2} \left( 1- \frac{r_s}{r} \right)^{-1} \end{align}

Hence

\begin{align} \frac{1}{b^2} &= \frac{c^2}{r^4} \left( 1 - \frac{r_s}{r} \right)^2 \left( \frac{1}{c^2} \left( 1- \frac{r_s}{r} \right)^{-2} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + \frac{r^2}{c^2} \left( 1- \frac{r_s}{r} \right)^{-1} \right) \\ &= \frac{1}{r^4} \left( \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + r^2 \left( 1- \frac{r_s}{r} \right) \right) \\ &= \frac{1}{r^4} \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 + \frac{1}{r^2} \left( 1- \frac{r_s}{r} \right) \end{align}

The relationship between $\mathrm{d}\varphi$ and $\mathrm{d}r$ can be derived as follows:

enter image description here

$$ \tan \alpha = r \frac{\mathrm{d}\varphi}{\mathrm{d}r} $$

$$ \frac{\mathrm{d}\varphi}{\mathrm{d}r} = \frac{\tan \alpha}{r} $$

$$ \left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)^2 = r^2 \cot^2 \alpha $$

Therefore

\begin{align} \frac{1}{b^2} &= \frac{1}{r^4} r^2 \cot^2 \alpha + \frac{1}{r^2} \left( 1- \frac{r_s}{r} \right) \\ &= \frac{1}{r^2} \cot^2 \alpha + \frac{1}{r^2} \left( 1 - \frac{r_s}{r} \right) \\ &= \frac{1}{r^2} \left( \cot^2 \alpha + 1 - \frac{r_s}{r} \right) \\ &= \frac{1}{r^2} \left( \csc^2 \alpha - \frac{r_s}{r} \right) \end{align}

and thus

$$ \varphi = \int_{r_o}^\infty \frac{\mathrm{d}r}{r^2 \sqrt{ \frac{1}{r_o^2} \left( \csc^2 \alpha - \frac{r_s}{r_o} \right) - \frac{1}{r^2} \left(1-\frac{r_s}{r}\right) }} $$

Is this expression correct? Is there a closed form in terms of elliptic functions or other special functions?

user76284
  • 1,398
  • Why do you ask? Your reference on PG coordinates has the graphic. Not that I believe it, but why do you want more, and since you seem to know where to find how to do it, why ask here? Or are you asking if there is anything wrong with the description you referenced? – Bob Bee Jul 03 '16 at 02:15
  • @BobBee The reference gives neither the value of $I$ nor the final expression (if there is a closed form). – user76284 Jul 03 '16 at 02:31
  • I don't think this analysis is correct, except from the point of view of a Schwarzschild observer. A real observer at radius $r$ measures $\alpha$ in their own local inertial frame. Also note that the observer cannot be inside the event horizon unless they are falling, in which case that demands a shift to the falling frame of reference. – ProfRob Nov 08 '23 at 08:06
  • @ProfRob $\alpha$ is the angle in Schwarzschild coordinates. Is that what you're referring to? – user76284 Nov 08 '23 at 20:38
  • Yes the angle $\alpha$ should be determined in their local frame. Isn't the analysis you present giving the angle as it would be in Schwarzschild coordinates? – ProfRob Nov 08 '23 at 21:05
  • I think the correct right angle triangle would have proper distance on one side and $cd\tau$ on the hypotenuse, where $d\tau$ is proper time. – ProfRob Nov 08 '23 at 21:08

0 Answers0