In Fig. 33–6(a) we see that the field of amplitude b is radiated by the motion of charges inside the glass which are responding to a field a inside the glass, and that therefore b is proportional to a. We might suppose that since our two figures are exactly the same, except for the direction of polarization, the ratio B/A would be the same as the ratio b/a. This is not quite true, however, because in Fig. 33–6(b) the polarization directions are not all parallel to each other, as they are in Fig. 33–6(a). It is only the component of A which is perpendicular to B, Acos(i+r), which is effective in producing B. Now we use a trick. We know that in both (a) and (b) of Fig. 33–6 the electric field in the glass must produce oscillations of the charges, which generate a field of amplitude −1, polarized parallel to the incident beam, and moving in the direction of the dotted line. But we see from part (b) of the figure that only the component of A that is normal to the dashed line has the right polarization to produce this field, whereas in Fig. 33–6(a) the full amplitude a is effective, since the polarization of wave a is parallel to the polarization of the wave of amplitude −1. Therefore we can write
Acos(i−r)/a=−1/−1,(33.2)
QUESTION: How is it that the component of A perpendicular to B is Acos(i+r)?
And how is Acos(i-r) the component of A that is normal to the dashed line?


