I am trying to prove the identity: $$\text{Tr}\left\{\star F_{\mu\nu}F^{\mu\nu}\right\}=\partial^{\mu}K_{\mu} \tag{1}$$ where $K_{\mu}$ is given by: $$K_\mu=\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{A^{\nu}F^{\rho\sigma}-\frac{2}{3}igA^{\nu}A^{\rho}A^{\sigma}\right\}\tag{2}$$ and $F$ and $\star F$ are the (non-abelian) field strength tensors defined by: $$\begin{align} F^{\mu\nu}&\equiv\partial^{\mu}A^{\nu}-\partial^{\mu}A^{\nu}+ig[A^{mu},A^{\nu}]\\ &=D^{\mu}A^\nu-D^{\nu}A^{\mu}, \end{align}\tag{3}$$ $$\star F^{\mu\nu}\equiv \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}.\tag{4}$$
I have already seen this directly related question but after following the advice given there (namely expand the RHS of eq. 1 and use both the Bianchi identity for $F$ and dummy index relabeling) I still cannot prove the identity. Below is my work.
$$\begin{align*} &\partial^{\mu}\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{A^{\nu}F^{\rho\sigma}-\frac{2}{3}igA^{\nu}A^{\rho}A^{\sigma}\right\}\\ &=\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{(\partial^{\mu}A^{\nu})F^{\rho\sigma}+\underset{\text{Bianchi}}{\underbrace{A^{\nu}\require{cancel}\cancel{(\partial^{\mu}F^{\rho\sigma})}}}-\underset{\text{index relabeling + cyclic perm.}}{\underbrace{2ig(\partial^{\mu}A^{\nu})A^{\rho}A^{\sigma}}}\right\} \tag{5}\\ &\\ &=\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{(\partial^{\mu}A^{\nu})F^{\rho\sigma}-ig(\partial^{\mu}A^{\nu})[A^{\rho},A^{\sigma}]\right\}\tag{6}\\ &=\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{(\partial^{\mu}A^{\nu})(F^{\rho\sigma}-ig[A^{\rho},A^{\sigma}])\right\}\tag{7}\\ &=\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}\text{Tr}\left\{F^{\mu\nu}F^{\rho\sigma}\color{red}{-2igF^{\mu\nu}[A^{\rho},A^{\sigma}]-g^2[A^{\mu},A^{\nu}][A^{\rho},A^{\sigma}]}\right\}\tag{8}\\ \end{align*}$$
In order for the identity to be true the terms in red must vanish, which I cannot see to be true in general. Where have I gone wrong?