Good day to everyone. I have a problem with the stress energy tensor of a perfect fluid. In the frame of reference of the fluid the stress energy tensor is
$T^{\mu \nu} = \left( \begin{array}{cccc} \rho & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{array}\right)$
Instead, in a general inertial frame the stress energy tensor is
$T^{\mu \nu} = (\rho+P)u^{\mu}u^{\nu} + \eta^{\mu\nu}$
(I am working in the convention such that $\eta^{00}=-1$ and $\eta^{11}=\eta^{22}=\eta^{33}=1$, and $u^{\mu}=(\gamma, \gamma\vec{\beta})$). This general form of the stress energy tensor should be verified, for example, applying a Lorentz boost along the x direction: $\Lambda^{\mu}_{\nu}=\left( \begin{array}{cccc} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{array}\right)$
So
$T'^{\mu\nu}=\Lambda^{\mu}_{\rho}\Lambda^{\nu}_{\sigma}T^{\rho\sigma} \to T'=\Lambda T \Lambda^T$
$T'^{\mu\nu}=\left( \begin{array}{cccc} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{array}\right) \left( \begin{array}{cccc} \rho & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{array}\right) \left( \begin{array}{cccc} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{array}\right)=$
$=\left( \begin{array}{cccc} \gamma^2\rho+\beta^2\gamma^2P & -\beta\gamma^2\rho-\beta\gamma^2P & 0 & 0 \\ -\beta\gamma^2\rho-\beta\gamma^2P & \beta^2\gamma^2\rho+P\gamma^2& 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & \gamma \end{array}\right)$
For the components $T'^{00}$ and $T'^{11}$ I have effectively obtained
$T'^{00} = (\rho+P)\gamma^2 - P$
and
$T'^{11} = (\rho+P)\gamma^2\beta^2 + P$
But my result for the component $T'^{01}$ is
$T'^{01} = -(\rho+P)\gamma\cdot\gamma\beta $
So I have obtained the opposite sign respect to the form $T'^{01}=(\rho+P)u^0u^1.$
Where am I wrong ? If someone makes me understand where I have made any mistakes I will be infinitely grateful.