From Nature Of Photon:
Electromagnetic field
The set of Maxwell equations [2] for vacuum is:
$$\begin{align} \mathrm{rot} \mathbf{E} &= -∂\mathbf{B}/c∂t, \tag{1} \\ \mathrm{rot} \mathbf{B} &= ∂\mathbf{E}/c∂t, \tag{2} \\ \mathrm{div} \mathbf{E} &= 0, \tag{3} \\ \mathrm{div} \mathbf{B} &= 0 \tag{4} \end{align}$$
where:
$\mathbf{E}$ – vector of electric field,
$\mathbf{B}$ – vector of magnetic field,
$t$ – time,
$c$ – speed of light.In the case of a monochromatic wave the expression for electric field $\mathbf{E}$ is:
$$\mathbf{E} (x, t) = \mathbf{E}_0 \sin (ωt), \tag{5}$$ where: $\mathbf{E}_0$ – amplitude of electric field.A physically correct solution can be obtained if in the equation (2) the expression of electric field $\mathbf{E}$ is used from (5), i.e.,
$$\mathrm{rot} \mathbf{E} = ∂(\mathbf{E}_0 \sin (ωt)) /c∂t.$$The result is:
$$\mathbf{B} (x, t) = \mathbf{B}_0 \cos (ωt). \tag{6}$$Vector $\mathbf{E}$ is shifted according to vector $\mathbf{B}$ by 90 degrees (Fig. 1.).
Fig. 1. Electric $\mathbf{E}$ and magnetic $\mathbf{B}$ field of the photon.
Where's that wrong?
