One way I've seen the Schrödinger equation expressed for the position wave function is
$$\frac{i\hbar\partial\Psi\left(\vec{r},t\right)}{\partial{t}}=-\frac{\hbar^2}{2m}\nabla^2\Psi\left(\vec{r},t\right)+V\left(\vec{r},t\right)\Psi\left(\vec{r},t\right)$$
with, $\hbar$ being the reduced plank constant $m$ being the mass, $t$ being the time, $\vec{r}=(x,y,z)$, $V\left(\vec{r},t\right)$ being the potential function, $\Psi\left(\vec{r},t\right)$ being the wave function and $\nabla^2\Psi\left(\vec{r},t\right)=\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{x^2}}+\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{y^2}}+\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{z^2}}$
In the above equation, given $\hbar$, $V\left(\vec{r},t\right)$, $m$, and $\Psi\left(\vec{r},0\right)$, there is a unique $\Psi\left(\vec{r},t\right)$, however even if $\Psi\left(\vec{r},0\right)$, and $V\left(\vec{r},t\right)$ are the same in two inertial reference frames this does not mean that $\Psi\left(\vec{r},t\right)$ are the same in both inertial reference frames as the velocity of the position wave function could be different in one inertial reference frame from in another, and in non relativistic quantum mechanics Galilean relativity still applies. The way to fix this is to include a galilean transformation in the above equation. The galilean transformation is $\vec{r}'=\vec{r}-\vec{v}t$, so the above equation becomes
$$\frac{i\hbar\partial\Psi\left(\vec{r},t\right)}{\partial{t}}=-\frac{\hbar^2}{2m}\left(\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{x'^2}}+\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{y'^2}}+\frac{\partial^2\Psi\left(\vec{r},t\right)}{\partial{z'^2}}\right)+V\left(\vec{r},t\right)\Psi\left(\vec{r},t\right)$$
with $v_{xw}$, $v_{yw}$, and $v_{zw}$ being related to the velocity of the wave function.
I also saw in the answers to this question that the Schrödinger equation in momentum space is
$$i\hbar\frac{\partial}{\partial{t}}\Psi(\vec{p},t)=\frac{\vec{p}^2}{2m}\Psi( \vec{p},t)+V(\vec{p},t)\Psi(\vec{p},t)$$
meaning that in velocity space the Schrödinger equation would be
$$i\hbar\frac{\partial}{\partial{t}}\Psi(\vec{v},t)=\frac{\vec{v}^2m}{2}\Psi( \vec{v},t)+V(\vec{v},t)\Psi(\vec{v},t)$$
I don't know if in the general case the position velocity wave function would be separable and unless it is separable, it would be necessary to take the position velocity wave function $\Psi\left(\vec{r},\vec{v},t\right)$.
What I'm confused about is what the Schrödinger equation would be in position velocity space. I don't know how to rigorously derive the Schrödinger equation in position velocity space from the Schrödinger equation in position space and the Schrödinger equation in velocity space, meaning the best I know how to do is to make an educated but blind guess as to what the Schrödinger equation might be in position velocity space, and while in some cases a blind guess can be correct in most many cases it isn't.
I understand that when there are two particles the Schrödinger equation describing the combined position time wave function is
$$\frac{i\hbar\partial\Psi\left(\vec{r_1},\vec{r_2},t\right)}{\partial{t}}=-\frac{\hbar^2}{2}\left(\frac{\nabla_1^2\Psi\left(\vec{r_1},\vec{r_2},t\right)}{m_1}+\frac{\nabla_2^2\Psi\left(\vec{r_1},\vec{r_2},t\right)}{m_2}\right)+V\left(\vec{r_1},\vec{r_2},t\right)\Psi\left(\vec{r_1},\vec{r_2},t\right)$$
Also
$$\frac{\partial^2c}{\partial(a+b)^2}=\frac{\partial^2c}{\partial{a}^2}+\frac{\partial\left(\frac{\partial{c}}{\partial{a}}\right)}{\partial{b}}+\frac{\partial\left(\frac{\partial{c}}{\partial{b}}\right)}{\partial{a}}+\frac{\partial^2c}{\partial{b}^2}=\frac{\partial^2c}{\partial{a}^2}+\frac{2\partial^2c}{\partial{a}\partial{b}}+\frac{\partial^2c}{\partial{b}^2}$$
and
$$\frac{\partial{a}}{\partial(bc)}=\frac{\partial{a}}{c\partial{b}}$$
So I'm wondering if the Schrödinger equation in position velocity space would be
$$\frac{i\hbar\partial\Psi\left(\vec{r},\vec{v},t\right)}{\partial{t}}=-\frac{\hbar^2}{2m}\left(\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{\partial{x^2}}+\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{\partial{y^2}}+\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{\partial{z^2}}+\frac{2\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t\partial{x}\partial{v_x}}+\frac{2\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t\partial{y}\partial{v_y}}+\frac{2\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t\partial{z}\partial{v_z}}+\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t^2\partial{{v_x}^2}}+\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t^2\partial{{v_y}^2}}+\frac{\partial^2\Psi\left(\vec{r},\vec{v},t\right)}{t^2\partial{{v_z}^2}}\right)+\frac{\vec{v}^2m\Psi\left(\vec{r},\vec{v},t\right)}{2}+V\left(\vec{r},\vec{v},t\right)\Psi\left(\vec{r},\vec{v},t\right)$$
or if it would be something else.
What would be the Schrödinger equation in position velocity space?