For the unitary translation operator $\hat{X}_a$ in 1 dimension it is easy to show that its matrix elements can be expressed purely with a delta distribution or equivalently as a combination of a differntial operator with a delta distribution.
Definition of its matrix elements: $\int \mathrm{d}x' X_a(x,x') \psi(x') = \psi(x-a)$
With delta distibution: $X_a(x,x') = \delta(x'-(x-a))$
Mixed with differential operator: $X_a(x,x') = \mathrm{e}^{-a\partial_x}\delta(x'-x)$
$\psi(x-a) = \int \mathrm{d}x'\delta(x'-(x-a))\psi(x') = c\int \mathrm{d}x'\mathrm{d}k\ e^{\mathrm{i}kx'}e^{-\mathrm{i}kx}e^{\mathrm{i}ka}\psi(x') = c\int \mathrm{d}x'\mathrm{d}k\ e^{\mathrm{i}kx'}e^{-a\partial_x}e^{-\mathrm{i}kx}\psi(x') = ce^{-a\partial_x}\int \mathrm{d}x'\mathrm{d}k\ e^{\mathrm{i}k(x'-x)}\psi(x') = e^{-a\partial_x}\int \mathrm{d}x' \delta(x'-x)\psi(x')\quad q.e.d.$
Now I want to have the same scheme for a Lorentz boost $\hat{\Lambda}$. I want to have the scalar product defined as integral over $x$ and $t$. (I just want to have it this way, so please don't start a discussion that in QFT the scalar product is defined differently.)
Definition of its matrix elements: $\int \mathrm{d}t'\mathrm{d}x' \Lambda(t,t',x,x') \psi(t',x') = \psi(\gamma t - \gamma\beta x, \gamma x - \gamma\beta t)$
With delta distibution: $\Lambda(t,t',x,x') = \delta(t'-(\gamma t - \gamma\beta x))\cdot\delta(x'-(\gamma x - \gamma\beta t))$
Mixed with differential operator: $\Lambda(t,t',x,x') =\ \textbf{???}$
And here I'm stuck. I found this Infinite-dimensional representation of Lorentz algebra for an infinitesimal boost on a scalar. So I started with $x\partial_t + t\partial_x$ and the https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula .
Set $X=x\partial_t$ and $Y=t\partial_x$. Then it follows
$[X,Y]=x\partial_x - t\partial_t$
$[X,[X,Y]]=-2X$ and $[Y,[Y,X]]=-2Y$
With the help of these it follows
$[Y,[X,[X,Y]]]=2[X,Y]$ and $[Y,[Y,[Y,X]]]=0$
Furthermore
$[[[[Y,X],Y],X],Y]=4Y$ and $[[[[X,Y],X],Y],X]=4X$
So the first terms of $Z(X,Y)$ sum up to
$Z(X,Y) = \left(1-\frac{1}{6}+\frac{1}{30}+... \right)(X+Y) + \left(\frac{1}{2}+\frac{1}{12}+... \right)[X,Y]$
and I expect a lot of work. Therefore the question: is there any ready-to-use formula for the $\textbf{???}$ above?
Update
The proposal of Thomas with $\beta=\tanh\zeta$, $\gamma=\cosh\zeta$, $\gamma\beta=\sinh\zeta$ gives us when Fourier transforming the delta distributions:
$\Lambda(t,t',x,x') = c^2 \int \mathrm{d}\omega\mathrm{d}k\ e^{\mathrm{i}\omega t'} e^{\mathrm{i}k x'} e^{-\zeta\ (x\partial t + t \partial x)} e^{-\mathrm{i}\omega t} e^{-\mathrm{i}k x}$
On the other hand the variant with the product of two $\delta$s gives us:
$\Lambda(t,t',x,x') = c^2 \int \mathrm{d}\omega\mathrm{d}k\ e^{\mathrm{i}\omega t'} e^{\mathrm{i}k x'} e^{-\mathrm{i}\omega t\cosh\zeta}e^{-\mathrm{i}k x\cosh\zeta}e^{\mathrm{i}k t\sinh\zeta}e^{\mathrm{i}\omega x\sinh\zeta} $
I guess if both shall be true we must show that
$e^{-\zeta\ (x\partial t + t \partial x)} e^{-\mathrm{i}\omega t} e^{-\mathrm{i}k x} = e^{-\mathrm{i}\omega t\cosh\zeta}e^{-\mathrm{i}k x\cosh\zeta}e^{\mathrm{i}k t\sinh\zeta}e^{\mathrm{i}\omega x\sinh\zeta}$
and the very left $e$ function will expand to a very ugly term according to the Baker-Campbell-Hausdorff formula where convergence might become a problem. Maybe the assumption (both forms of the matrix elements are equivalent) is wrong. But then I'd like to know why. Or the assumption is correct, then one should find a proof of the equivalence somewhere.