Suppose an internal combustion engine burns the same amount of fuel every cycle (regardless of engine or car speed ) that means it creates the same pressure every cycle and the force on the piston due to gas pressure is $\Delta P\cdot A$ (let's assume this process is isobaric and the whole fuel mixture ignites simultaneously for sake of simplicity). how is force the same according to the previous equation while the P=FV equation says otherwise?
this implies that the car accelerates at a constant rate and power keeps increasing but that doesn't happen in real life that's why we use forced induction or just increase the amount of burnt fuel to increase power, also cars on dynos reach max power at a certain rpm so it doesn't look like a thing due to air resistance.
Am I missing something?
Note: I'm not talking about internal combustion engines specifically I just found it to be the best example to demonstrate my reasoning and know that I said force and velocitybut changing to their rotatinal counterparts won't change anything about the physical rules or affect the reasoning.