In gel electrophoresis, there needs to be an electric field created in the gel. I realized that I have some gaps related to my understanding of electromagnetism because I cannot fully understand in what conditions a field gets created. Are the electrode plates on either side in contact with the gel or insulated, and if so, how does this affect the field? My understanding is two insulated plates with different voltages would still create a field between them. Is the issue that the surface charges in the gel would align themselves to cancel out this field on the gel inside? Thus, do you need to actually pass a current through the gel in order to create an electric field inside? I think this is related to the nature of the electric field in a current carrying wire (where I treat the gel as a really thick rectangular wire), which I also realize I don't understand. Namely, do the electrodes need to span the full width of the gel rectangle to create a uniform field across the width?
More generally, what are the possible ways to create an electric field on the interior of a conductive object such as a gel? Do you have to pass a current through it from one side to the other? My other thought is that a changing magnetic flux would also create an electric field, although it would be of a odd shape. But would this induced electric field exist on the interior or also be subject to some cancelling effect as is the electrostatic case?