In post-Newtonian approximation of gravitation, the metric on and around the Earth is taken to have the expression $$ \begin{bmatrix} -1+\frac{2}{c^2}U+ \frac{2}{c^4}(\psi-U^2) + \mathrm{O}(c^{-5}) & -\frac{4}{c^3} V_x + \mathrm{O}(c^{-5}) & -\frac{4}{c^3} V_y + \mathrm{O}(c^{-5}) & -\frac{4}{c^3} V_z + \mathrm{O}(c^{-5}) \\\\ -\frac{4}{c^3} V_x + \mathrm{O}(c^{-5}) & 1+ \frac{2}{c^2} U + \mathrm{O}(c^{-4}) & 0 & 0 \\\\ -\frac{4}{c^3} V_y + \mathrm{O}(c^{-5}) & 0 & 1+ \frac{2}{c^2} U + \mathrm{O}(c^{-4}) & 0 \\\\ -\frac{4}{c^3} V_z + \mathrm{O}(c^{-5}) & 0 & 0 & 1+ \frac{2}{c^2} U + \mathrm{O}(c^{-4}) \end{bmatrix} $$ in a coordinate system $(ct, x, y,z)$, where $U$, $\psi$, $V_i$ depend on all coordinates. $U$ is related to the Newtonian gravitational potential, and $(V_j)$ is the so-called gravitational vector potential. See eg Poisson & Will 2014, eqns (8.2). This metric is used for example for GPS purposes, see eg Petit & Luzum 2010.
On Earth, say at the equator, $\lVert\partial U/\partial x^i\rVert \approx g \approx 9.8\,\mathrm{m/s^2}$ in a radial direction -- the gravitational acceleration. Can anyone provide an order of magnitude for the vector potential $(V_j)$ and its spatial gradient: $$ V_j \approx \mathord{?}\,\mathrm{m^3/s^3} \qquad \frac{\partial V_j}{\partial x^i} \approx \mathord{?}\,\mathrm{m^2/s^3} $$ say at the equator? I've been looking in the references above and in the references given in this question and its answer, but I don't manage to find it.
I could approximately calculate it using the integral formulae given eg in Poisson & Will, eqns (8.4). But both for lack of time and to double-check such a calculation I'd like to find some reference where this order of magnitude is given. Cheers!
References:
- Poisson, Will: Gravity: Newtonian, Post-Newtonian, Relativistic (CUP 2014)
- Petit, Luzum: IERS Conventions, International Earth Rotation and Reference Systems Service, Technical Note 36.