
We'll express the emergent angle $\:\mathrm{i}_{2}\:$ and the deviation angle $\:\delta\:$ as functions of the incident angle $\:\mathrm{i}_{1}$ and after this we'll find the condition that minimizes the deviation angle $\:\delta$.
From Figure-01 we have
\begin{align}
\sin\mathrm{i}_{1} & = \dfrac{n_{2}}{n_{1}}\sin\mathrm{i}_{1}^{\prime}\qquad \text{Snell's Law at point }\color{red}{\boldsymbol{1}}
\tag{01a}\\
\sin\mathrm{i}_{2}^{\prime} & = \dfrac{n_{1}}{n_{2}}\sin\mathrm{i}_{2}\qquad \text{Snell's Law at point }\color{red}{\boldsymbol{2}}
\tag{01b}\\
\mathrm{i}_{2}^{\prime} & = \mathrm A - \mathrm{i}_{1}^{\prime}\qquad \quad \!\text{from triangle }\color{red}{\boldsymbol{124}}
\tag{01c}\\
\delta & = \omega_{1}+\omega_{2}=\left(\mathrm{i}_{1}-\mathrm{i}_{1}^{\prime}\right)+\left(\mathrm{i}_{2}-\mathrm{i}_{2}^{\prime}\right)=\mathrm{i}_{1}+\mathrm{i}_{2}-\underbrace{\left(\mathrm{i}_{1}^{\prime}+\mathrm{i}_{2}^{\prime}\right)}_{\mathrm A}
\nonumber\\
\Longrightarrow \quad \delta & = \mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm A \qquad \!\text{from triangle }\color{red}{\boldsymbol{123}}
\tag{01d}
\end{align}
so
\begin{align}
\mathrm{i}_{2} & \stackrel{(\rm 01b)}{=\!=\!=} \arcsin\left(\dfrac{n_{2}}{n_{1}}\sin\mathrm{i}_{2}^{\prime}\right)\stackrel{(\rm 01c)}{=\!=\!=} \arcsin\left[\dfrac{n_{2}}{n_{1}}\sin\left(\mathrm A - \mathrm{i}_{1}^{\prime}\right)\right]
\nonumber\\
& \stackrel{(\rm 01a)}{=\!=\!=}\arcsin\left[\dfrac{n_{2}}{n_{1}}\sin\left(\mathrm A - \arcsin\left[ \dfrac{n_{1}}{n_{2}}\sin\mathrm{i}_{1}\right]\right)\right]
\nonumber\\
& =\!=\!=\arcsin\left[\dfrac{n_{2}}{n_{1}}\left(\sin\mathrm A\sqrt{1- \left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}} -\cos\mathrm A \dfrac{n_{1}}{n_{2}}\sin\mathrm{i}_{1}\right)\right]
\nonumber\\
& =\!=\!=\arcsin\left(\sin\mathrm A\cdot\sqrt{\left(\dfrac{n_{2}}{n_{1}}\right)^{2}- \sin^{2}\mathrm{i}_{1}} -\cos\mathrm A \sin\mathrm{i}_{1}\right)
\nonumber
\end{align}
that is
\begin{equation}
\mathrm{i}_{2}\left(\mathrm{i}_{1}\right)=\arcsin\left(\sin\mathrm A\cdot\sqrt{\left(\dfrac{n_{2}}{n_{1}}\right)^{2}- \sin^{2}\mathrm{i}_{1}} -\cos\mathrm A \sin\mathrm{i}_{1}\right)
\tag{02}
\end{equation}
and from (01d)
\begin{equation}
\delta\left(\mathrm{i}_{1}\right)=\mathrm{i}_{1} +\underbrace{\arcsin\left(\sin\mathrm A\cdot\sqrt{\left(\dfrac{n_{2}}{n_{1}}\right)^{2}- \sin^{2}\mathrm{i}_{1}} -\cos\mathrm A \sin\mathrm{i}_{1}\right)}_{\mathrm{i}_{2}}-\mathrm A
\tag{03}
\end{equation}
To find the minimum deviation angle we start from
\begin{equation}
\delta\left(\mathrm{i}_{1}\right)=\mathrm{i}_{1} +\underbrace{\arcsin\left[\dfrac{n_{2}}{n_{1}}\sin\mathrm{i}_{2}^{\prime}\right]}_{\mathrm{i}_{2}}-\mathrm A
\tag{04}
\end{equation}
and so
\begin{align}
\dfrac{\mathrm d \delta \hphantom{_{1}}}{\mathrm d\mathrm{i}_{1}} = & \:1 +\dfrac{\dfrac{n_{2}}{n_{1}}\cos\mathrm{i}_{2}^{\prime}}{\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}}}\dfrac{\mathrm d \mathrm{i}_{2}^{\prime}}{\mathrm d\mathrm{i}_{1}}
\nonumber\\
\stackrel{(\rm 01a)}{=\!=\!=} & \:1 +\dfrac{\dfrac{n_{2}}{n_{1}}\cos \mathrm{i}_{2}^{\prime}}{\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2} \mathrm{i}_{2}^{\prime}}}\dfrac{\dfrac{n_{1}}{n_{2}}\cos\mathrm{i}_{1}}{\sqrt{1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}}}
\nonumber\\
=\!=\!=& \:1+\dfrac{\cos\mathrm{i}_{2}^{\prime}\cdot\cos\mathrm{i}_{1}}{\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}}\:\sqrt{1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}}}
\nonumber
\end{align}
that is
\begin{equation}
\dfrac{\mathrm d \delta \hphantom{_{1}}}{\mathrm d\mathrm{i}_{1}}=1+\dfrac{\cos\mathrm{i}_{2}^{\prime}\cdot\cos\mathrm{i}_{1}\vphantom{\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}}}}{\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}}\:\sqrt{1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}}}
\tag{05}
\end{equation}
Now
\begin{align}
\dfrac{\mathrm d \delta \hphantom{_{1}}}{\mathrm d\mathrm{i}_{1}} & =0 \qquad \Longrightarrow
\nonumber\\
\cos\mathrm{i}_{2}^{\prime}\cdot\cos\mathrm{i}_{1} & = -\sqrt{1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}}\:\sqrt{1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}}\qquad \Longrightarrow
\nonumber\\
\cos^{2}\mathrm{i}_{2}^{\prime}\cdot\cos^{2}\mathrm{i}_{1} & = \left[1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}\right]\:\left[1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}\right]\qquad \Longrightarrow
\nonumber\\
\left(1-\sin^{2}\mathrm{i}_{2}^{\prime}\right)\cdot\left(1-\sin^{2}\mathrm{i}_{1} \right)& = \left[1-\left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}\right]\:\left[1-\left(\dfrac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\mathrm{i}_{1}\right]\qquad \Longrightarrow
\nonumber\\
\sin^{2}\mathrm{i}_{1} & = \left(\dfrac{n_{2}}{n_{1}}\right)^{2}\sin^{2}\mathrm{i}_{2}^{\prime}\stackrel{(\rm 01b)}{=\!=\!=} \sin^{2}\mathrm{i}_{2}
\tag{06}
\end{align}
so
\begin{equation}
\sin^{2}\mathrm{i}_{1}=\sin^{2}\mathrm{i}_{2}
\tag{07}
\end{equation}
Since $\:\mathrm{i}_{1},\mathrm{i}_{2}\in \left[0,\pi/2\right]\:$ the condition for extreme deviation angle is
\begin{equation}
\mathrm{i}_{1}=\mathrm{i}^{*}=\mathrm{i}_{2}
\tag{08}
\end{equation}
But then
\begin{equation}
\mathrm{i}_{1}^{\prime}=\mathrm{i}_{2}^{\prime}
\tag{09}
\end{equation}
so from (01c)
\begin{equation}
\mathrm{i}_{1}^{\prime}=\dfrac{\mathrm A}{2}=\mathrm{i}_{2}^{\prime}
\tag{10}
\end{equation}
From (01a)
\begin{equation}
\mathrm{i}^{*}=\arcsin\left[\left(\dfrac{n_{2}}{n_{1}}\right)\sin\left(\dfrac{\mathrm A}{2}\right)\right]
\tag{11}
\end{equation}
Finally for the minimum deviation angle we have, see (01d),
\begin{equation}
\delta^{*}=2\cdot\mathrm{i}^{*}-\mathrm A =2\cdot\arcsin\left[\left(\dfrac{n_{2}}{n_{1}}\right)\sin\left(\dfrac{\mathrm A}{2}\right)\right]-\mathrm A
\tag{12}
\end{equation}
From (12) the refraction index of the prism material relative to the surrounding material could be expressed as function of the prism angle $\:\mathrm A\:$ and the minimum deviation angle $\:\delta^{*}\:$
\begin{equation}
\left(\dfrac{n_{2}}{n_{1}}\right)=\dfrac{\sin\left(\dfrac{\mathrm A + \delta^{*}}{2}\right)}{\sin\left(\dfrac{\mathrm A}{2}\right)}
\tag{13}
\end{equation}
Numerical Example

Let
\begin{equation}
\mathrm A =60^{\rm o}\,,\quad n_{1}=1.00\,,\quad n_{2}=1.50
\tag{14}
\end{equation}
From (11)
\begin{equation}
\mathrm{i}^{*}=\arcsin\left[\left(\dfrac{1.50}{1.00}\right)\sin\left(\dfrac{60^{\rm o}}{2}\right)\right]=\arcsin\left(0.75\right)=48.59^{\rm o}
\tag{15}
\end{equation}
From (12)
\begin{equation}
\delta^{*}=2\cdot\mathrm{i}^{*}-\mathrm A =2\cdot48.59^{\rm o}-60^{\rm o}=37.18^{\rm o}
\tag{16}
\end{equation}
Related : Why does the graph of deviation angle in a prism doesn't get a symmetry?.