Ampère's force $d^2\vec{F_{21}}$ of current element $i_2d\vec{\ell_2}$ on $i_1d\vec{\ell_1}$ is$$d^2\vec{F_{21}}=-\frac{\mu_0}{4\pi}i_1i_2\frac{\hat{r}}{r^2}\left[2(d\vec{\ell_1}\cdot d\vec{\ell_2})-3(\hat{r}\cdot d\vec{\ell_1})(\hat{r}\cdot d\vec{\ell_2})\right]=-d^2\vec{F_{12}}$$(cf. Ampère's 1826 Théorie mathématique des phénomènes électrodynamiques uniquement déduite de l’expérience).
Can one derive Ampère's circuital law
$$\vec{\nabla}\times\vec{B}-\epsilon_0\mu_0\frac{\partial\vec{E}}{\partial t}=\mu_0\vec{J},$$as it appears as one of Maxwell's equations, from Ampère's force law above? What assumptions might one need to make?