0

I have the following Hamiltonian of a particle in an electromagnetic field, in Cartesian coordinates, while $A(\vec{x},t)$ is a potential vector and $\phi(\vec{x},t)$ is a scalar function.

$$H = \frac{1}{2m}\left(\vec{P}-\frac{q}{c}\vec{A}\right)^2+q\phi$$

In my exercise, $\phi = 0$, and $A$ is given in cylindrical coordinates: $A = \frac{1}{2}rB\hat{\theta}$

I'm very confused on how to change my Hamiltonian to cylindrical coordinates and derive Hamilton equations to the problem.

How do $\vec{P}$ change from Cartesian to Cylindrical?

Thank you.

Taru
  • 185

1 Answers1

3

Hints :

We want to express the scalar operator
\begin{equation} \left(\mathbf{P}-\dfrac{q}{c}\mathbf{A}\right)^{2} \tag{01} \end{equation} in cylindrical coordinates. We'll use the symbols $\:\rho,\varphi,z\:$ for the cylindrical coordinates and $\:\mathbf{e}_{\rho},\mathbf{e}_{\varphi},\mathbf{e}_{z}\:$ for the unit vectors. Note that $\:\mathbf{P}\:$ is the linear momentum operator, a vector operator \begin{equation} \mathbf{P}=-\mathrm{i}\,\hbar \boldsymbol{\nabla} \tag{02} \end{equation} which expressed in cartesian coordinates $\:x,y,z\:$ is \begin{equation} \mathbf{P}=-\mathrm{i}\,\hbar \boldsymbol{\nabla}=-\mathrm{i}\,\hbar \left(\dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y}, \dfrac{\partial}{\partial z}\right) \tag{03} \end{equation} and $\:\mathbf{A}\:$ is a vector operator which in the present case is \begin{equation} \mathbf{A}=\left(A_{\rho},A_{\varphi},A_{z}\right)=\left(0,\tfrac{1}{2}\rho B, 0\right)=\tfrac{1}{2}\rho B \mathbf{e}_{\varphi} \tag{04} \end{equation} already in cylindrical coordinates.

Now, the scalar operator (01) is \begin{align} \left(\mathbf{P}-\dfrac{q}{c}\mathbf{A}\right)^{2} &=\left(\mathbf{P}-\dfrac{q}{c}\mathbf{A}\right)\boldsymbol{\cdot}\left(\mathbf{P}-\dfrac{q}{c}\mathbf{A}\right)=\mathbf{P}\boldsymbol{\cdot}\mathbf{P}-\dfrac{q}{c}\,\mathbf{P}\boldsymbol{\cdot}\mathbf{A}-\dfrac{q}{c}\,\mathbf{A}\boldsymbol{\cdot}\mathbf{P} +\left(\dfrac{q}{c}\right)^{2}\mathbf{A}\boldsymbol{\cdot}\mathbf{A}\\ &=\mathbf{P}^{2}-\dfrac{q}{c}\,\mathbf{P}\boldsymbol{\cdot}\mathbf{A}-\dfrac{q}{c}\,\mathbf{A}\boldsymbol{\cdot}\mathbf{P}+\left(\dfrac{q}{c}\right)^{2}\mathbf{A}^{2}\\ &=-\hbar^{2}\nabla^{2}+\mathrm{i}\,\hbar\dfrac{q}{c}\,\boldsymbol{\nabla}\boldsymbol{\cdot}\mathbf{A}+\mathrm{i}\,\hbar\dfrac{q}{c}\,\mathbf{A}\boldsymbol{\cdot}\boldsymbol{\nabla}+\left(\dfrac{q}{c}\right)^{2}\mathbf{A}^{2} \end{align} that is \begin{equation} \left(\mathbf{P}-\dfrac{q}{c}\mathbf{A}\right)^{2}=-\hbar^{2}\nabla^{2}+\mathrm{i}\,\hbar\dfrac{q}{c}\left(\boldsymbol{\nabla}\boldsymbol{\cdot}\mathbf{A}\right)+\mathrm{i}\,\hbar\dfrac{q}{c}\left(\mathbf{A}\boldsymbol{\cdot}\boldsymbol{\nabla}\right)+\left(\dfrac{q}{c}\right)^{2}\mathbf{A}^{2} \tag{05} \end{equation} So, our exercise is to express the scalar operator $\:\nabla^{2}\:$ and the vector operator $\:\boldsymbol{\nabla}\:$ in cylindrical coordinates given that these operators in cartesian coordinates are \begin{align} \nabla^{2} & = \dfrac{\partial ^{2}}{\partial x^{2}}+\ \dfrac{\partial ^{2}}{\partial y^{2}}+ \dfrac{\partial ^{2}}{\partial z^{2}} \tag{06a}\\ \boldsymbol{\nabla} & =\left(\dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y}, \dfrac{\partial}{\partial z}\right) \tag{06b} \end{align} and \begin{align} x & = \rho \cos \varphi \tag{07a}\\ y & = \rho \sin \varphi \tag{07b}\\ z & = z \tag{07c} \end{align}

Check your results with the following : \begin{align} \nabla^{2}\psi & = \dfrac{1}{\rho}\dfrac{\partial}{\partial \rho}\left(\rho\,\dfrac{\partial \psi}{\partial \rho}\right)+\dfrac{1}{\rho^{2}}\dfrac{\partial ^{2} \psi}{\partial \varphi^{2}}+\dfrac{\partial ^{2} \psi}{\partial z^{2}} \tag{08a}\\ \boldsymbol{\nabla}\psi & = \dfrac{\partial \psi}{\partial \rho}\mathbf{e}_{\rho} +\dfrac{1}{\rho}\dfrac{\partial \psi}{\partial \varphi}\mathbf{e}_{\varphi}+\dfrac{\partial \psi}{\partial z }\mathbf{e}_{z}=\left( \dfrac{\partial }{\partial \rho},\dfrac{1}{\rho}\dfrac{\partial }{\partial \varphi},\dfrac{\partial }{\partial z }\right)\psi \tag{08b}\\ \boldsymbol{\nabla}\boldsymbol{\cdot}\mathbf{A} & =\dfrac{1}{\rho}\dfrac{\partial}{\partial \rho}\left(\rho\,A_{\rho}\right)+\dfrac{1}{\rho}\dfrac{\partial A_{\varphi}}{\partial \varphi}+\dfrac{\partial A_{z}}{\partial z} \tag{08c} \end{align}

enter image description here

Frobenius
  • 15,613