1

In classical EM I understand the electric and magnetic fields are invariant under the potential transformations $\varphi\to\varphi - \partial_t\chi$ and $\mathbf{A}\to\mathbf{A} + \nabla\chi$.

From here people often say this gives us a freedom to do something like choose $\nabla\cdot\mathbf{A} = 0$. I don't understand how we go from the above transformations to specifying properties that $\varphi$ and $\mathbf{A}$ satisfy.

Qmechanic
  • 201,751

1 Answers1

2

If $\boldsymbol A$ does not satisfy $\nabla\cdot \boldsymbol A=0$, then redefine $$ \tilde{\boldsymbol A}\equiv\boldsymbol A+\nabla\chi $$ where $\chi$ is any solution of the PDE $$ -\nabla^2\chi=\nabla\cdot \boldsymbol A $$

The vector $\tilde{\boldsymbol A}$ satisfies, by construction, $\nabla\cdot \tilde{\boldsymbol A}=0$.

AccidentalFourierTransform
  • 53,248
  • 20
  • 131
  • 253