The complete Ampère-Maxwell is
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} = \mu_{0}\,\boldsymbol{\jmath}+\frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}
\tag{01}
\end{equation}
where $\:\boldsymbol{\jmath}\:$ the electric current density vector. In our case
\begin{equation}
\boldsymbol{\jmath}\left(\mathbf{r},t\right)=q\cdot\delta\left(\mathbf{r}-\mathbf{x}\right)\cdot\dfrac{\mathrm d\mathbf{x}}{\mathrm dt}=q\cdot\delta\left(\mathbf{r}-\mathbf{x}\right)\cdot\boldsymbol{\upsilon}
\tag{02}
\end{equation}
where $\:\mathbf{x}\left(t\right),\boldsymbol{\upsilon}\left(t\right)= \mathrm d\mathbf{x}/\mathrm dt\:$ the position and velocity of the point charge.
At all field points except the singular point where the charge is on we have
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} = \frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}
\tag{03}
\end{equation}

More exactly from above Figure we have
\begin{equation}
\mathbf{E}\left(\mathbf{r},t\right)=\dfrac{q}{4\pi \epsilon_{0}\gamma^{2}}\dfrac{1}{\left(1\!-\!\beta^{2}\sin^{2}\!\phi\right)^{\frac32}}\dfrac{\mathbf{r}_{\bf o}}{\:\:\Vert\mathbf{r}_{\bf o}\Vert^{3}}\
\tag{04}
\end{equation}
\begin{equation}
\beta=\dfrac{\upsilon}{\:c\:}\,,\quad \gamma=\left(1-\beta^{2}\right)^{-\frac12}
\tag{05}
\end{equation}
Now
\begin{equation}
\mathbf{r}_{\bf o}=\mathbf{r}-\mathbf{x}=
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z\vphantom{\dfrac12}
\end{bmatrix}\,,
\quad \Vert\mathbf{r}_{\bf o}\Vert=\Vert\mathbf{r}-\mathbf{x}\Vert=\left[\left(x\!-\!\upsilon\,t\right)^{2}+y^{2}+z^{2}\right]^{\frac12}
\tag{06}
\end{equation}
and
\begin{equation}
\sin^{2}\!\phi=\dfrac{y^{2}+z^{2}}{\Vert\mathbf{r}_{\bf o}\Vert^{2}}=\dfrac{y^{2}+z^{2}}{\left(x\!-\!\upsilon\,t\right)^{2}+y^{2}+z^{2}}
\tag{07}
\end{equation}
So
\begin{equation}
\mathbf{E}\left(x,y,z,t\right)=\dfrac{Q}{\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z \vphantom{\dfrac12}
\end{bmatrix}\,,\quad Q\equiv \dfrac{q}{4\pi \epsilon_{0}\gamma^{2}}
\tag{08}
\end{equation}
For the magnetic field
\begin{equation}
\mathbf{B}\left(x,y,z,t\right) =\dfrac{1}{c^{2}}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\tag{09}
\end{equation}
so we have
\begin{align}
\mathbf{B}\left(x,y,z,t\right) &=\dfrac{1}{c^{2}}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\nonumber\\
&=\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\begin{bmatrix}
\:\:\upsilon \:\:\vphantom{\dfrac{\partial}{\partial x}}\\
0 \vphantom{\dfrac{\partial}{\partial x}} \\
0 \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\boldsymbol{\times}
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac{\partial}{\partial x}}\\
y \vphantom{\dfrac{\partial}{\partial x}}\\
z \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\nonumber\\
& =\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \vphantom{\dfrac{\partial}{\partial x}}\\
\upsilon & 0 & 0 \vphantom{\dfrac{\partial}{\partial x}} \\
x\!-\!\upsilon\,t & \hphantom{x\!-} y \hphantom{x\!-} & \hphantom{x\!-}z\hphantom{x\!-}\vphantom{\dfrac{\partial}{\partial x}}
\end{vmatrix}
\tag{10}
\end{align}
or
\begin{equation}
\mathbf{B}\left(x,y,z,t\right) =\dfrac{1}{c^{2}}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)=\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\begin{bmatrix}
\hphantom{-} 0 \vphantom{\dfrac{\partial}{\partial x}}\\
-\upsilon\,z \vphantom{\dfrac{\partial}{\partial x}}\\
\hphantom{-}\upsilon\,y \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{11}
\end{equation}
From (08) with differentiations I prove(1) that
\begin{equation}
\dfrac{1}{c^{2}}\dfrac{\partial\mathbf{E}}{\partial t} =\dfrac{1}{4\pi \epsilon_{0}\gamma^{2}}\dfrac{q\upsilon}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
2\left(x\!-\!\upsilon\,t\right)^{2}-\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right) \vphantom{\dfrac12}\\
3\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac12}\\
3\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac12}
\end{bmatrix}
\tag{12}
\end{equation}
and from (11) I prove(2)
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times}\mathbf{B}=\dfrac{1}{4\pi \epsilon_{0}\gamma^{2}}\dfrac{q\upsilon}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
2\left(x\!-\!\upsilon\,t\right)^{2}\!-\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\\
3\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac{\partial}{\partial x}} \\
3\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{13}
\end{equation}
that is equation (03)
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} = \frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}
\tag{03}
\end{equation}
EDIT
The electromagnetic field vectors $\:\mathbf{E},\mathbf{B}\:$ given by equations (04) and (09) respectively satisfy the four Maxwell equations without charge and charge current densities
\begin{align}
\rho\left(\mathbf{r},t\right) & = 0
\tag{14a}\\
\boldsymbol{\jmath}\left(\mathbf{r},t\right) & = \boldsymbol{0}
\tag{14b}
\end{align}
at all field points except at the singular point
\begin{equation}
\mathbf{r}_{\bf o}=\mathbf{r}-\mathbf{x}=\boldsymbol{0}
\tag{15}
\end{equation}
that is at the point where the charge is on.
In order to include this singularity in our equations we must use the following equations
\begin{equation}
\dfrac{\mathbf{r}_{\bf o}}{\:\:\Vert\mathbf{r}_{\bf o}\Vert^{3}}=\dfrac{\mathbf{r}-\mathbf{x}}{\:\:\Vert\mathbf{r}-\mathbf{x}\Vert^{3}}=-\boldsymbol{\nabla}\left(\!\dfrac{1}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)
\tag{16}
\end{equation}
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\cdot}\boldsymbol{\nabla}\left(\!\dfrac{1}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)=\nabla^{2}\left(\!\dfrac{1}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)=-4\pi\delta\left(\mathbf{r}-\mathbf{x}\right)
\tag{17}
\end{equation}
where the components of the 3-vector operator $\:\boldsymbol{\nabla}\:$ are the partial derivatives with respect to the components $\:(x,y,z)\:$ of the position vector $\:\mathbf{r}\:$ of the field point.
Then the electromagnetic field vector $\:\mathbf{E}\:$ of equation (04) is written
\begin{equation}
\mathbf{E}\left(\mathbf{r},t\right)=\boldsymbol{-}\dfrac{q}{4\pi \epsilon_{0}\gamma^{2}}\dfrac{1}{\left(1\!-\!\beta^{2}\sin^{2}\!\phi\right)^{\frac32}}\cdot\boldsymbol{\nabla}\left(\!\dfrac{1}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)
\tag{18}
\end{equation}
I believe that the vector $\:\mathbf{E}\:$ of equation (04) satisfies the Maxwell equation
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\cdot}\mathbf{E}\left(\mathbf{r},t\right)=0
\tag{19}
\end{equation}
while the vector $\:\mathbf{E}\:$ of equation (18) satisfies the Maxwell equation
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\cdot}\mathbf{E}\left(\mathbf{r},t\right)=\dfrac{\rho\left(\mathbf{r},t\right)}{\epsilon_{0}}=\dfrac{q\,\delta\left(\mathbf{r}-\mathbf{x}\right)}{\epsilon_{0}}
\tag{20}
\end{equation}
Also the vector $\:\mathbf{B}\:$ of equation (09) is expressed with respect to
$\:\mathbf{E}\:$ of equation (18)
\begin{equation}
\mathbf{B}\left(\mathbf{r},t\right) =\dfrac{1}{c^{2}}\left[\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\left(\mathbf{r},t\right)\right]=\boldsymbol{-}\dfrac{ \mu_{0}\,q}{4\pi\gamma^{2}}\dfrac{1}{\left(1\!-\!\beta^{2}\sin^{2}\!\phi\right)^{\frac32}}\cdot\left[\boldsymbol{\upsilon}\boldsymbol{\times}\boldsymbol{\nabla}\left(\!\dfrac{1}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)\right]
\tag{21}
\end{equation}
and since $\:\boldsymbol{\upsilon}\:$ is a constant vector
\begin{equation}
\mathbf{B}\left(\mathbf{r},t\right)=\dfrac{ \mu_{0}\,q}{4\pi\gamma^{2}}\dfrac{1}{\left(1\!-\!\beta^{2}\sin^{2}\!\phi\right)^{\frac32}}\cdot\left[\boldsymbol{\nabla}\boldsymbol{\times}\left(\!\dfrac{\boldsymbol{\upsilon}}{\Vert\mathbf{r}-\mathbf{x}\Vert}\right)\right]
\tag{22}
\end{equation}
The vectors $\:\mathbf{E},\mathbf{B}\:$ of equations (04),(09) satisfy the Maxwell equation (03)
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} = \frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}
\tag{03}
\end{equation}
while the vectors $\:\mathbf{E},\mathbf{B}\:$ of equations (18),(22) satisfy (I believe) the Maxwell equation (01) with the electric current density of equation (02)
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} = \mu_{0}\,\boldsymbol{\jmath}+\frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}=\mu_{0}\,q\,\delta\left(\mathbf{r}-\mathbf{x}\right)\boldsymbol{\upsilon}+\frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t}
\tag{23}
\end{equation}
(1)
Proof of equation (12)
From (08)
\begin{align}
\dfrac{1}{c^{2}}\dfrac{\partial\mathbf{E}}{\partial t} & =
\dfrac{\partial}{\partial t}\Biggl(\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}\Biggr)
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z \vphantom{\dfrac12}
\end{bmatrix}
+\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}\dfrac{\partial}{\partial t}
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z \vphantom{\dfrac12}
\end{bmatrix}
\nonumber\\
& =\dfrac{3Q\upsilon\left(x\!-\!\upsilon\,t\right)}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z \vphantom{\dfrac12}
\end{bmatrix}
+\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\begin{bmatrix}
-\upsilon \vphantom{\dfrac12}\\
\hphantom{-} 0 \vphantom{\dfrac12}\\
\hphantom{-} 0 \vphantom{\dfrac12}
\end{bmatrix}
\nonumber\\
& =\dfrac{3Q\upsilon\left(x\!-\!\upsilon\,t\right)}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
x\!-\!\upsilon\,t \vphantom{\dfrac12}\\
y \vphantom{\dfrac12}\\
z \vphantom{\dfrac12}
\end{bmatrix}
+\dfrac{Q\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
-\upsilon \vphantom{\dfrac12}\\
\hphantom{-} 0 \vphantom{\dfrac12}\\
\hphantom{-} 0 \vphantom{\dfrac12}
\end{bmatrix}
\nonumber\\
& =\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
3\upsilon\left(x\!-\!\upsilon\,t\right)^{2}-\upsilon\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right] \vphantom{\dfrac12}\\
3\upsilon\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac12}\\
3\upsilon\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac12}
\end{bmatrix}
\nonumber\\
&=\dfrac{Q\upsilon}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
2\left(x\!-\!\upsilon\,t\right)^{2}\!-\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\\
3\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac{\partial}{\partial x}} \\
3\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{12}
\end{align}
(2)
Proof of equation (13)
From (11)
\begin{equation}
\mathbf{B}\left(x,y,z,t\right)= f\left(x,y,z\right)\mathbf{M}\left(x,y,z\right)
\tag{13.1}
\end{equation}
where
\begin{equation}
f\left(x,y,z\right) \equiv\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac32}}
\,,\qquad
\mathbf{M}\left(x,y,z\right) \equiv
\begin{bmatrix}
\hphantom{-} 0 \\
-\upsilon\,z \\
\hphantom{-}\upsilon\,y
\end{bmatrix}
\tag{13.2}
\end{equation}
If $\: f\left(x,y,z\right)\:$ and $\:\mathbf{M}\left(x,y,z\right)\:$
are scalar and vector functions respectively of the coordinates in $\:\mathbb{R}^{3}\:$ then
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\times}\left(f\, \mathbf{M}\right)=\left( \boldsymbol{\nabla} f\right)\boldsymbol{\times}\mathbf{M}+ f \left(\boldsymbol{\nabla}\boldsymbol{\times}\mathbf{M}\right)
\tag{13.3}
\end{equation}
For a short proof of identity (13.3) see my answer here : Passing from curl to vector product, equation (04).
Now
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\times}\mathbf{M} =
\boldsymbol{\nabla}\boldsymbol{\times}
\begin{bmatrix}
\: \hphantom{-} 0 \:\vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:-\upsilon\,z \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:\hphantom{-}\upsilon\,y \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}
\end{bmatrix}
=
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\dfrac{\partial\hphantom{x}}{\partial x} & \dfrac{\partial\hphantom{y}}{\partial y} & \dfrac{\partial\hphantom{z}}{\partial z}\\
0 &\!\! -\upsilon\,z & \upsilon\,y \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}
\end{vmatrix}
=
\begin{bmatrix}
\: 2\upsilon \:\vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:0 \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:0 \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}
\end{bmatrix}
=2\,\boldsymbol{\upsilon}
\tag{13.4}
\end{equation}
and
\begin{equation}
\boldsymbol{\nabla} f=\dfrac{\partial f}{\partial x}\mathbf{i}+\dfrac{\partial f}{\partial y}\mathbf{j}+\dfrac{\partial f}{\partial z}\mathbf{k}
\tag{13.5}
\end{equation}
where
\begin{align}
\dfrac{\partial f}{\partial x} & =\dfrac{-3Q\left(x\!-\!\upsilon\,t\right)}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\tag{13.5a}\\
\dfrac{\partial f}{\partial y} & =\dfrac{-3Q\left(1\!-\!\beta^{2}\right)y}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\tag{13.5b}\\
\dfrac{\partial f}{\partial z} & =\dfrac{-3Q\left(1\!-\!\beta^{2}\right)z}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\tag{13.5c}
\end{align}
so
\begin{equation}
\boldsymbol{\nabla} f=
\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
-3\left(x\!-\!\upsilon\,t\right) \:\vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:-3\left(1\!-\!\beta^{2}\right)y \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}\\
\:-3\left(1\!-\!\beta^{2}\right)z \: \vphantom{\dfrac{\partial\hphantom{x}}{\partial x}}
\end{bmatrix}
\tag{13.6}
\end{equation}
From (13.2), (13.6)
\begin{equation}
\left(\boldsymbol{\nabla} f\right)\boldsymbol{\times}\mathbf{M}=\dfrac{-3Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \vphantom{\dfrac{\partial}{\partial x}}\\
\left(x\!-\!\upsilon\,t\right) & \left(1\!-\!\beta^{2}\right)y & \left(1\!-\!\beta^{2}\right)z \vphantom{\dfrac{\partial}{\partial x}} \\
0 & \hphantom{x\!-} -\upsilon\,z \hphantom{x\!-} & \hphantom{x\!-}\upsilon\,y\hphantom{x\!-}\vphantom{\dfrac{\partial}{\partial x}}
\end{vmatrix}
\tag{13.7}
\end{equation}
that is
\begin{equation}
\left(\boldsymbol{\nabla} f\right)\boldsymbol{\times}\mathbf{M}=\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
-3\upsilon\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\\
3\upsilon\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac{\partial}{\partial x}} \\
3\upsilon\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{13.8}
\end{equation}
From (13.2), (13.4)
\begin{equation}
f \left(\boldsymbol{\nabla} \boldsymbol{\times}\mathbf{M}\right)=\dfrac{Q}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
2\upsilon\left(x\!-\!\upsilon\,t\right)^{2}\!+2\upsilon\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\\
0 \vphantom{\dfrac{\partial}{\partial x}} \\
0 \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{13.9}
\end{equation}
and from (13.1),(13.8),(13.9) we have finally
\begin{equation}
\boldsymbol{\nabla} \boldsymbol{\times}\mathbf{B}=\left(\boldsymbol{\nabla} f\right)\boldsymbol{\times}\mathbf{M}+ f\left(\boldsymbol{\nabla} \boldsymbol{\times}\mathbf{M}\right)=\dfrac{Q\upsilon}{c^{2}\left[\left(x\!-\!\upsilon\,t\right)^{2}\!+\!\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\right]^{\frac52}}
\begin{bmatrix}
2\left(x\!-\!\upsilon\,t\right)^{2}\!-\left(1\!-\!\beta^{2}\right)\left(y^{2}+z^{2}\right)\\
3\left(x\!-\!\upsilon\,t\right)y \vphantom{\dfrac{\partial}{\partial x}} \\
3\left(x\!-\!\upsilon\,t\right)z \vphantom{\dfrac{\partial}{\partial x}}
\end{bmatrix}
\tag{13}
\end{equation}

Video here : Electric field of a uniformly moving point charge