According to wikipedia,the angular momentum of light is expressed by $$\epsilon_0\int \left(\vec E\times \vec{A} + \sum_{i=x,y,z}\vec E_i(\vec r\times \vec \nabla)A_i \right) d\vec r$$
How to derive this?
Since the momentum of light is $$\frac{1}{c^2} \vec E\times \vec H,$$ where $E$ and $H$ are the electric and magnetic fields. the angular momentum is $$\int \vec r\times \frac{1}{c^2} \left(\vec E\times \vec H \right)d\vec r$$
If we substitute $\vec H=1/\mu_0\vec\nabla\times \vec A$, we get
$$ \int \vec r\times \frac{1}{c^2} (\vec E\times \vec H) d\vec r =\int \vec r\times \frac{1}{\mu_0 c^2} \vec E\times (\vec \nabla \times \vec A) d\vec r . $$
Using the equation, $\vec a \times (\vec b \times \vec c)=(\vec a\cdot\vec c)\vec b-(\vec a\cdot \vec b)\vec c$,
$$ \int \vec r\times \frac{1}{\mu_0 c} \vec E\times (\vec \nabla \times \vec A) d\vec r =\frac{1}{\mu_0 c^2} \int \sum_{i=x,y,z} E_i (\vec r \times \vec \nabla) A_i -\vec r \times (\vec E \cdot \vec \nabla )\vec Ad\vec r , $$
and here I get stuck.
If we conduct integration by parts to remove $\vec r$, some unnecessary parts remains.
Let's focus on the term, $\frac{1}{\mu_0 c^2} \int -\vec r \times (\vec E \cdot \vec \nabla )\vec Ad\vec r$.
By the integration by parts, \begin{align} \frac{1}{\mu_0 c^2} \int -\vec r \times (\vec E \cdot \vec \nabla )\vec Ad\vec r & =\frac{1}{\mu_0 c^2} \sum_i \int [ -\vec r \times E_i\vec A ]_{x_i=-\infty}^{\infty}dx_{i'}dx_{i''} \\ & \qquad + \frac{1}{\mu_0 c^2} \int \vec E \times \vec Ad\vec r \\ & \qquad + \frac{1}{\mu_0 c^2} \int \vec r \times (\vec \nabla \cdot \vec E)\vec Ad\vec r \\ & = \frac{1}{\mu_0 c^2} \sum_i \int [ -\vec r \times E_i\vec A ]_{x_i=-\infty}^{\infty}dx_{i'}dx_{i''} \\ & \qquad + \frac{1}{\mu_0 c^2} \int \vec E \times \vec A d\vec r \end{align}
I'm not sure why the first term, $$\frac{1}{\mu_0 c^2} \sum_i \int [ -\vec r \times E_i\vec A ]_{x_i=-\infty}^{\infty}dx_{i'}dx_{i''}$$ vanishes.