Motivated by breaking up "relativistic" energy ($\tilde{H}$) into rest mass energy (M$c^2$) and non-relativistic kinetic energy (H) we add the following redefinition $\tilde{H} \rightarrow M c^2 + \frac{1}{2}H.$ And further, motivated by the equivalence of mass and energy in relativity, we define a mirrored redefinition for $\tilde{M}$ given by $\tilde{M} \rightarrow -M c^2 + \frac{1}{2}H.$ See equation 2.23 of Ref [1]
So all in all we have
\begin{align}
\tilde{J_{ij}} &\rightarrow J_{ij} \label{newc1}\\
\tilde{H} &\rightarrow M c^2 + \frac{1}{2} H \label{newc2}\\
\tilde{K_{i}} &\rightarrow c K_i \label{newc3}\\
\tilde{P_{i}} &\rightarrow c P_i \label{newc4} \\
\tilde{M} &\rightarrow -M c^2 + \frac{1}{2}H \label{newc5}
\end{align}
It will turn out that we ought to define a bit more before taking the $c\rightarrow \infty$ limit. But to show what goes wrong, we will include the calculation of applying only these
to Poincaré $\oplus$ $\mathfrak{u}$(1).
First, make the re-definitions prescribed
\begin{align}
[\tilde{P_i},\tilde{H}] &= 0 & \longrightarrow &&
[P_i,M] + \frac{1}{2} c^{-2} [P_i,H] &= 0 \\
[\tilde{P_i},\tilde{P_j}] &= 0 & \longrightarrow && [P_i, P_j] &= 0 \\
[\tilde{K_i},\tilde{H}] &= \tilde{P_i} & \longrightarrow &&
[K_i,M]+\frac{1}{2}c^{-2}[K_i,H] &= c^{-2} P_i \\
[\tilde{K_i},\tilde{P_j}] &= \delta_{ij} \tilde{H} & \longrightarrow && [K_i,P_j] &= \delta_{ij} (M + \frac{1}{2}c^{-2}H)
\\
[\tilde{J_{ij}},\tilde{P_k}] &= 2 \delta_{k[j}\tilde{P_{i]}} & \longrightarrow && [J_{ij},P_k] &= 2 \delta_{k[j}P_{i]} \\
[\tilde{J_{ij}},\tilde{H}] &= 0 & \longrightarrow &&[J_{ij},M] + \frac{1}{2} c^{-2}[J_{ij},H] &= 0 \\
[\tilde{K_i},\tilde{K_j}] &= 0 & \longrightarrow && [K_i,K_j] &= 0 \tag{\discolorlinks{\ref{8}}.d} \\
[\tilde{J_{ij}},\tilde{K_k}] &= 2 \delta_{k[j}K_{i]} & \longrightarrow && [J_{ij},K_k] &= 2 \delta_{k[j}K_{i]} \\
[\tilde{J_{ij}},\tilde{J_{kl}}] &= 4\delta_{[i[k}\tilde{J}_{l]j ]} & \longrightarrow && [J_{ij},J_{kl}] &= 4\delta_{[i[k}J_{l]j ]}
\end{align}
Taking the $c\rightarrow \infty$ limit we have
\begin{align}
[P_i,M] + \frac{1}{2}c^{-2} [P_i,H] &= 0 & \longrightarrow && [P_i,M] &= 0 \\
[K_i,M]+\frac{1}{2}c^{-2}[K_i,H] &= c^{-2} P_i & \longrightarrow && [K_i,M] &= 0 \\
[K_i,P_j] &= \delta_{ij} (M + \frac{1}{2}c^{-2}H )& \longrightarrow && [K_i,P_j] &= \delta_{ij} M \\
[J_{ij},M] + \frac{1}{2}c^{-2}[J_{ij},H] &= 0 & \longrightarrow && [J_{ij},M] &= 0
\end{align}
All in all we are left with
\begin{align}
[P_i,M] &= 0 \\
[P_i, P_j] &= 0 \\
[K_i,M] &= 0 \\
[K_i,P_j] &= \delta_{ij} M \\
[J_{ij},P_k] &= 2 \delta_{k[j}P_{i]} \\
[J_{ij},M] &= 0 \\
[K_i,K_j] &= 0 \\
[J_{ij},K_k] &= 2 \delta_{k[j}K_{i]} \\
[J_{ij},J_{kl}] &= 4\delta_{[i[k}J_{l]j ]}
\end{align}
Notice why this is wrong. We have lost information about the algebra. Notably equation 4.4 of Ref [2], $[K_i,H]=P_i$.
Taking a look at $[K_i,M]+\frac{1}{2}c^{-2}[K_i,H]=c^{-2} P_i$ it seems we lost the information about $[K_i,H]$ by taking the limit to get to $[K_i,M] = 0$.
Maybe having two commutators on the left hand side is special? Two unknowns so we need to take the limit twice? Notably, what is we FIRST took the c to infinity limit to get $[K_i,M] =0$, then used $[K_i,M] =0$ as a fact, to write instead
\begin{align} \notag
[\tilde{K_i},\tilde{H}] = \tilde{P_i} \longrightarrow [cK_i,Mc^2+\frac{1}{2}H] &= cP_i\\ \notag
c^3[K_i,M]+\frac{1}{2}c[K_i,H] &= cP_i \\\notag
0+c[K_i,H] &= cP_i \\
[K_i,H] &= P_i \label{missinglink}
\end{align}
Using the result of the limit in taking this new limit is not concrete.
It turns out there is a way to more elegantly take this limit. What if, as opposed to only looking at what the relativistic generators are sent to, we look at what the non-relativistic generators $J_{ij},K_i,P_i,H,$ and $M$ are sent to as well? The above redefinitions are certainly invertible maps. Adding and subtracting the non trivial ones gives us
\begin{align}
J_{ij} &\rightarrow \tilde{J_{ij}} \label{correctc1}\\
H &\rightarrow \tilde{M} + \tilde{H} \label{correctc2}\\
K_i &\rightarrow c^{-1} \tilde{K_{i}} \label{correctc3}\\
P_i &\rightarrow c^{-1} \tilde{P_{i}} \label{correctc4} \\
M &\rightarrow \frac{1}{2} c^{-2} \tilde{H} - \frac{1}{2} c^{-2} \tilde{M} \label{correctc5}
\end{align}
Now the unique part. We want the commutation relations for the non-relativistic algebra right? Well instead of taking the limit of the relativistic algebra's commutation relations, let's go right to the NR commutators. We will \newline write all the possible commutators given the NR generators $J_{ij},K_i,P_i,H,$ and $M$,
plug in the NR $\rightarrow$ Rel. redefinitions ,
use the commutators of the relativistic algebra
plug in the Rel. $\rightarrow$ NR definitions
and then take the limit.
Note that $M$ is in the center so we don't include that in "all the possible commutators." Between $J_{ij},K_i,P_i,H$ we will have 4 choose 2 (6) commutators between distinct elements, and then 3 commutators for each of $J_{ij},K_i,P_i$ with themselves. We will use
$\mapsto$ for the NR $\rightarrow$ Rel. redefinitions,
$=$ for basic simplifications,
$\asymp$ for commutations according to the Poincaré algebra
$\hookrightarrow$ for the Rel. $\rightarrow$ NR redefinitions, and
$\Rrightarrow$ for the $c\rightarrow \infty$ limit. We have
\begin{align} \notag
[K_i,H] &\mapsto [c^{-1} \tilde{K_i}, \tilde{H} + \tilde{M}] \\\notag
&= c^{-1} [\tilde{K_i}, \tilde{H}] \\\notag
&\asymp c^{-1} \tilde{P_i}\\\notag
&\hookrightarrow c^{-1} c P_i \label{barg1} \\
&= P_i \\ \notag
[J_{ij},H] &\mapsto [\tilde{J_{ij}},\tilde{H}+ \tilde{M}] \\ \notag
&= [\tilde{J_{ij}},\tilde{H}] \\
&\asymp 0 \\ \notag
[P_i, H] &\mapsto c^{-1} [ \tilde{P_i}, \tilde{H}+ \tilde{M}] \\ \notag
&= c^{-1} [\tilde{P_i},\tilde{H}] \\ \notag
&\asymp c^{-1} \cdot 0 \\
&= 0 \\ \notag
[K_i,P_i] &\mapsto c^{-2} [\tilde{K_i}, \tilde{P_j}] \\ \notag
&\asymp c^{-2} \delta_{ij} \tilde{H} \\ \notag
&\hookrightarrow c^{-2} \delta_{ij} (Mc^2 + \frac{1}{2} H) \\ \notag
&= \delta_{ij} (M + \frac{1}{2} c^{-2} H) \\
&\Rrightarrow \delta_{ij} M
\end{align}
\begin{align}\notag
[J_{ij},K_k] &\mapsto c^{-1} [\tilde{J_{ij}},\tilde{K_k}] \\ \notag
&\asymp c^{-1} 2 \delta_{k[j}\tilde{K}_{i]} \\ \notag
&\hookrightarrow c^{-1} c 2 \delta_{k[j}K_{i]} \\
&= 2 \delta_{k[j}K_{i]} \\ \notag
[J_{ij},P_k] &\mapsto c^{-1} [\tilde{J_{ij}},\tilde{P_k}] \\ \notag
&\asymp c^{-1} 2 \delta_{k[j}\tilde{P}_{i]} \\ \notag
&\hookrightarrow c^{-1} c 2 \delta_{k[j}P_{i]} \\
&= 2 \delta_{k[j}P_{i]} \\ \notag
[K_i,K_j] &\mapsto c^{-2} [\tilde{K_i},\tilde{K_j}] \\ \notag
&\asymp c^{-2} 0\\
&= 0 \\ \notag
[P_i,P_j] &\mapsto c^{-2} [\tilde{P_i},\tilde{P_j}] \\ \notag
&\asymp c^{-2} 0\\
&= 0 \\ \notag
[J_{ij},J_{kl}] &\mapsto [\tilde{J_{ij}},\tilde{J_{kl}}] \\ \notag
&\asymp 4\delta_{[i[k}\tilde{J}_{l]j ]} \\
&\hookrightarrow 4\delta_{[i[k}J_{l]j ]} \label{barg9}
\end{align}
These are precisely the commutation relations of the Bargmann algebra. See equations 2.5.a - 2.5.d and 2.24 of Ref[1].
[1] E. Bergshoeff, J. Gomis & P. Salgado-Rebolledo, "Non-relativistic limits and three-dimensional coadjoint Poincare gravity," arXiv:2001.11790, (2020).
[2] R. Andringa, E. Bergshoeff, S. Panda & M. de Roo, "Newtonian Gravity and the Bargmann Algebra," arXiv:1011.1145, (2011).