Reference : My answer here Vector product in a 4-dimensional Minkowski spacetime.
$=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=$
In my above referenced answer from two 4-vectors $\mathbf{X}\boldsymbol{=}\left(\mathbf{x},x_4\right)$ and $\mathbf{P}\boldsymbol{=}\left(\mathbf{p},p_4\right)$, see also equations (15a) and (15b) therein, we had defined as their outer product the antisymmetric $4\times 4$ matrix
\begin{equation}
\left[\,\mathbf{H}\,\right] \boldsymbol{=}\left[\,\mathbf{X}\boldsymbol{\times}\mathbf{P}\,\right]\boldsymbol{\equiv}
\begin{bmatrix}
\begin{array}{ccc|c}
\hphantom{\boldsymbol{=}}0 & \boldsymbol{-}\mathrm h_3 & \boldsymbol{+}\mathrm h_2 & \boldsymbol{+}\mathrm g_1\vphantom{\dfrac{a}{b}}\\
\boldsymbol{+}\mathrm h_3 & \hphantom{\boldsymbol{=}}0 & \boldsymbol{-}\mathrm h_1 & \boldsymbol{+}\mathrm g_2\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}\mathrm h_2 & \boldsymbol{+}\mathrm h_1 & \hphantom{\boldsymbol{=}}0 & \boldsymbol{+}\mathrm g_3\vphantom{\dfrac{a}{b}}\\
\hline
\boldsymbol{-}\mathrm g_1 & \boldsymbol{-}\mathrm g_2 & \boldsymbol{-}\mathrm g_3 & \hphantom{\boldsymbol{=}}0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
& \mathbf{h}\boldsymbol{\times} & & \mathbf{g} \vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\mathbf{g}^{\mathsf{T}} & & 0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\tag{A-01}\label{A-01}
\end{equation}
where
\begin{equation}
\mathbf{h}\boldsymbol{=}\mathbf{x}\boldsymbol{\times}\mathbf{p}\,,\quad \mathbf{g}\boldsymbol{=}x_4\mathbf{p}\boldsymbol{-}p_4\mathbf{x}
\tag{A-02}\label{A-02}
\end{equation}
For the details of this definition see equations (16)-(21) therein.
Moreover, based on this, from the space-time position and relativistic linear momentum of a particle respectively
\begin{equation}
\mathbf{X} \boldsymbol{=}\left(\mathbf{x}, ct\right) \qquad \mathbf{P} \boldsymbol{=}\left(\gamma m_{0}\mathbf{u}, \gamma m_{0} c\right)
\tag{A-03}\label{A-03}
\end{equation}
we had defined as relativistic angular momentum the antisymmetric $4\times 4$ matrix
\begin{equation}
\left[\,\mathbf{H}\,\right]
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
& \left[\,\mathbf{x}\boldsymbol{\times}\mathbf{p}\,\right] & & \left(ct\mathbf{p}\boldsymbol{-}\gamma m_{0}c\mathbf{x}\vphantom{\tfrac{a}{b}}\right) \vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\left(ct\,\mathbf{p}\boldsymbol{-}\gamma m_{0}c\,\mathbf{x}\vphantom{\tfrac{a}{b}}\right)^{\mathsf{T}} & & 0\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{array}
\end{bmatrix}
\tag{A-04}\label{A-04}
\end{equation}
the real 6-vector $\mathbf{H}$ being (as in the question)
\begin{equation}
\mathbf{H} \boldsymbol{=}
\begin{bmatrix}
\mathbf{h}\vphantom{\dfrac{\tfrac{a}{b}}{b}}\\
\mathbf{g}\vphantom{\dfrac{a}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\mathbf{x}\boldsymbol{\times}\mathbf{p}\vphantom{\dfrac{\tfrac{a}{b}}{b}}\\
ct\mathbf{p}\boldsymbol{-}\gamma m_{0}c\mathbf{x}\vphantom{\dfrac{a}{\tfrac{a}{b}}}
\end{bmatrix}
\tag{A-05}\label{A-05}
\end{equation}
It's interesting to see how the antisymmetric $4\times 4$ matrix $\left[\,\mathbf{H}\,\right]$ of equation \eqref{A-01} is transformed under a Lorentz boost
\begin{equation}
\mathrm L
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
&\mathrm I\boldsymbol{+}\dfrac{\gamma^2}{c^2\left(\gamma\boldsymbol{+}1\right)}\boldsymbol{\upsilon}\boldsymbol{\upsilon}^{\mathsf{T}} & & \boldsymbol{-}\gamma\dfrac{\boldsymbol{\upsilon}}{c}\vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\gamma\dfrac{\boldsymbol{\upsilon}^{\mathsf{T}}}{c} & & \gamma\vphantom{\dfrac{\dfrac{a}{b}}{b}}
\end{array}
\end{bmatrix}
\tag{A-06}\label{A-06}
\end{equation}
We have
\begin{equation}
\left[\,\mathbf{H}'\,\right] \boldsymbol{=}\left[\,\mathbf{X}'\boldsymbol{\times}\mathbf{P}'\,\right]\boldsymbol{=}\left[\,\left(\mathrm L\mathbf{X}\right)\boldsymbol{\times}\left(\mathrm L\mathbf{P}\right)\,\right]\boldsymbol{=}\mathrm L\left[\,\mathbf{X}\boldsymbol{\times}\mathbf{P}\,\right]\mathrm L \boldsymbol{=}\mathrm L\left[\,\mathbf{H}\,\right]\mathrm L
\tag{A-07}\label{A-07}
\end{equation}
hence
\begin{equation}
\left[\,\mathbf{H}'\,\right] \boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
& \mathbf{h}'\boldsymbol{\times} & & \mathbf{g}' \vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\mathbf{g}'^{\mathsf{T}} & & 0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\tag{A-08}\label{A-08}
\end{equation}
where
\begin{align}
\mathbf{h}' & \boldsymbol{=}
\gamma\mathbf{h}\boldsymbol{-}\dfrac{\gamma^2}{c^2\left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{h}\boldsymbol{\cdot}\boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\vphantom{A^{1/2}}\boldsymbol{-}\dfrac{\gamma}{c}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{g}\vphantom{A^2}\right)
\tag{A-09a}\label{A-09a}\\
\mathbf{g}' & \boldsymbol{=}\gamma\mathbf{g}\boldsymbol{-}\dfrac{\gamma^2}{c^2\left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{g}\boldsymbol{\cdot}\boldsymbol{\upsilon}\vphantom{A^2}\right)\boldsymbol{\upsilon}\boldsymbol{+}\dfrac{\gamma}{c}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{h}\vphantom{A^2}\right)
\tag{A-09b}\label{A-09b}
\end{align}
If, by a similar way, we apply the Lorentz boost \eqref{A-06} to the antisymmetric matrix of the electromagnetic field
\begin{equation}
\mathcal{E\!\!\!\!E}
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
& \left[\,c\,\mathbf{B}\,\right] & & \boldsymbol{+}\mathbf{E} \vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\mathbf{E}^{\boldsymbol{\top}} & & 0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
0 & \boldsymbol{-}c\,B_3 & \boldsymbol{+}c\,B_2 & \boldsymbol{+}E_1\vphantom{\dfrac{a}{b}}\\
\boldsymbol{+}c\,B_3 & 0 & \boldsymbol{-}c\,B_1 & \boldsymbol{+}E_2 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}c\,B_2 & \boldsymbol{+}c\,B_1 & 0 & \boldsymbol{+}E_3\vphantom{\dfrac{a}{b}}\\
\hline
\boldsymbol{-}E_1 & \boldsymbol{-}E_2 & \boldsymbol{-}E_3 & 0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\tag{A-10}\label{A-10}
\end{equation}
see equations (28)-(31) in my referenced answer, then we have
\begin{align}
\mathbf{B}' & \boldsymbol{=}
\gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2\left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot}\boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\vphantom{A^{1/2}}\boldsymbol{-}\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\vphantom{A^{1/2}}\right)
\tag{A-11a}\label{A-11a}\\
\mathbf{E}' & \boldsymbol{=}
\gamma\mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2\left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot}\boldsymbol{\upsilon}\vphantom{A^2}\right)\boldsymbol{\upsilon}\boldsymbol{+}\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\vphantom{A^2}\right)
\tag{A-11b}\label{A-11b}
\end{align}
as we meet in many textbooks and answers in PSE.
Under the $4\times 4$ transformation
\begin{equation}
\mathrm R
\boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
&\hphantom{==}\mathcal R \hphantom{==}& & \hphantom{=}\mathbf{O}\hphantom{=}\vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \mathbf{O}^{\boldsymbol{\top}} & & 1\vphantom{\dfrac{\dfrac{a}{b}}{b}}
\end{array}
\end{bmatrix}
\tag{A-12}\label{A-12}
\end{equation}
where $\mathcal R$ is an orthonormal $3\times 3$ matrix
\begin{equation}
\mathcal R \mathcal R^{\mathsf{T}}\boldsymbol{=}\mathrm I_{3\times 3}\boldsymbol{=}\mathcal R^{\mathsf{T}}\mathcal R
\,,\qquad \boldsymbol{\vert} \det(\mathcal R)\boldsymbol{\vert}\boldsymbol{=}1
\tag{A-13}\label{A-13}
\end{equation}
the antisymmetric $4\times 4$ matrix $\left[\,\mathbf{H}\,\right]$ of equation \eqref{A-01} is transformed as follows
\begin{equation}
\left[\,\mathbf{H}'\,\right] \boldsymbol{=}\left[\,\mathbf{X}'\boldsymbol{\times}\mathbf{P}'\,\right]\boldsymbol{=}\left[\,\left(\mathrm R\mathbf{X}\right)\boldsymbol{\times}\left(\mathrm R\mathbf{P}\right)\,\right]\boldsymbol{=}\mathrm R\left[\,\mathbf{X}\boldsymbol{\times}\mathbf{P}\,\right]\mathrm R^{\mathsf{T}}
\tag{A-14}\label{A-14}
\end{equation}
hence
\begin{equation}
\left[\,\mathbf{H}'\,\right] \boldsymbol{=}
\begin{bmatrix}
\begin{array}{ccc|c}
& & & \vphantom{\dfrac{a}{b}}\\
& \mathbf{h}'\boldsymbol{\times} & & \mathbf{g}' \vphantom{\dfrac{a}{b}}\\
& & & \vphantom{\dfrac{a}{b}}\\
\hline
& \boldsymbol{-}\mathbf{g}'^{\mathsf{T}} & & 0\vphantom{\dfrac{a}{b}}
\end{array}
\end{bmatrix}
\tag{A-15}\label{A-15}
\end{equation}
where
\begin{align}
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{h}'\boldsymbol{\times} & \boldsymbol{=}
\mathcal R \left(\mathbf{h}\boldsymbol{\times}\right)\mathcal R^{\mathsf{T}}\boldsymbol{=}\mathcal R \left[\left(\mathbf{x}\boldsymbol{\times}\mathbf{p}\right)\boldsymbol{\times}\vphantom{\tfrac{a}{b}}\right]\mathcal R^{\mathsf{T}}
\nonumber\\
& \boldsymbol{=}\left[\mathcal R\mathbf{x}\boldsymbol{\times}\mathcal R\mathbf{p}\vphantom{\tfrac{a}{b}}\right]\boldsymbol{\times}\stackrel{\eqref{A-18}}{\boldsymbol{=\!=\!=}}\det(\mathcal R)\cdot\left[\mathcal R \left(\mathbf{x}\boldsymbol{\times}\mathbf{p}\right)\vphantom{\tfrac{a}{b}}\right]\boldsymbol{\times}\boldsymbol{=}\det(\mathcal R)\cdot\mathcal R\mathbf{h}\boldsymbol{\times}\boldsymbol{\Longrightarrow}
\nonumber\\
\mathbf{h}'& \boldsymbol{=}\det(\mathcal R)\cdot\mathcal R\mathbf{h}
\tag{A-16a}\label{A-16a}\\
\mathbf{g}' & \boldsymbol{=}\mathcal R \mathbf{g}
\tag{A-16b}\label{A-16b}
\end{align}
$=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=$
If $\:\mathbf{a},\:\mathbf{b} $ are complex $\:3$-vectors in $\:\mathbb{C}^{3}\:$ and $\:\mathcal M\:$ an invertible linear transformation in this space then
\begin{equation}
\mathcal M\mathbf{a} \boldsymbol{\times} \mathcal M\mathbf{b} \boldsymbol{=}
\left[\;\det\left(\mathcal M\right)\cdot\left(\mathcal M^{-1}\right)^{\mathsf{T}}\; \right]\left(\mathbf{a} \boldsymbol{\times}\mathbf{b}\right)
\tag{A-17}\label{A-17}
\end{equation}
If moreover $\:\mathcal M\:$ is a real orthonormal matrix then $\left(\mathcal M^{-1}\right)^{\mathsf{T}}\boldsymbol{=}\mathcal M$ and $\det\left(\mathcal M\right)\boldsymbol{=}\boldsymbol{\pm}1$ hence
\begin{equation}
\mathcal M\mathbf{a} \boldsymbol{\times} \mathcal M\mathbf{b} \boldsymbol{=} \det\left(\mathcal M\right)\cdot\mathcal M\left(\mathbf{a} \boldsymbol{\times}\mathbf{b}\right)\boldsymbol{=}\boldsymbol{\pm}\,\mathcal M\left(\mathbf{a} \boldsymbol{\times}\mathbf{b}\right)
\tag{A-18}\label{A-18}
\end{equation}
For a proof of identity \eqref{A-17} see $\textbf{Section B}$ in my answer as user82794 (former diracpaul) here
How to get result $\boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3} =\boldsymbol{6}\boldsymbol{\oplus}\bar{\boldsymbol{3}}$ for SU(3) irreducible representations?