Define a time-dependent Hamiltonian $$H(t) = H_1(t) + H_2(t),\tag{1}$$ where $$[H_1(t), H_2(t)] = 0 ~ \forall t \in [0,T].\tag{2}$$ Is it true that the unitary operator generated by $H(t)$ is a product of two unitaries generated by $H_1(t)$ and $H_2(t)$, i.e.
\begin{equation} U(T) = \mathcal{T}\exp\Big(-i \int_0^T dt H(t) \Big) = \mathcal{T}\exp\Big(-i \int_0^T dt H_1(t) \Big)\mathcal{T}\exp\Big(-i \int_0^T dt H_2(t) \Big) = U_1(T) U_2(T)~?\tag{3} \end{equation}
(Essentially, I'm curious whether the BCH formula works in time-ordered exponentials.)