The momentum equation of the MHD equations is as follows $$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}\right) = -\nabla p + \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B}$$
where $\rho$ is density, $p$ is pressure, $v$ is velocity vector, $B$ is magnetic field vector. Assuming $\rho_0$, $p_0$, $v_0$ and $B_0$ are the equilibrium parts of density, pressure, velocity vector, magnetic field vector, respectively, and $\delta\rho$, $\delta p$, $\delta v$ and $\delta B$ are the first order perturbed part of the corresponding parameters. The linearized equation should be
$$\rho_0 \frac{\partial \delta \mathbf{v}}{\partial t} + \rho_0 (\mathbf{v}_0 \cdot \nabla) \delta \mathbf{v} = -\nabla \delta p + \frac{1}{\mu_0} (\nabla \times \delta \mathbf{B}) \times \mathbf{B}_0$$
I tried as follows
"To linearize the given momentum equation, we assume that the perturbed variables ($\delta \rho$), ($\delta p$), ($\delta \mathbf{v}$), and ($\delta \mathbf{B}$) are small compared to their equilibrium values ($\rho_0$), ($p_0$), ($\mathbf{v}_0$), and ($\mathbf{B}_0$). We can express the perturbed quantities as follows:
$$\rho = \rho_0 + \delta \rho, \quad p = p_0 + \delta p, \quad \mathbf{v} = \mathbf{v}_0 + \delta \mathbf{v}, \quad \mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B} $$
Now, let's substitute these perturbed quantities into the momentum equation and linearize the terms. Since we are interested in the first-order linear terms, we can ignore products of perturbed quantities:
$$ \begin{align*} \rho_0 \left(\frac{\partial (\mathbf{v}_0 + \delta \mathbf{v})}{\partial t} + ((\mathbf{v}_0 + \delta \mathbf{v}) \cdot \nabla) (\mathbf{v}_0 + \delta \mathbf{v})\right) =& -\nabla (p_0 + \delta p) \\&+ \frac{1}{\mu_0} \left(\nabla \times (\mathbf{B}_0 + \delta \mathbf{B})\right) \times (\mathbf{B}_0 + \delta \mathbf{B}) \end{align*}$$
the last term: $$\frac{1}{\mu_0} \left(\nabla \times (\mathbf{B}_0 + \delta \mathbf{B})\right) \times (\mathbf{B}_0 + \delta \mathbf{B}) = \frac{1}{\mu_0} [\left(\nabla \times (\mathbf{B}_0 + \delta \mathbf{B})\right) \times \mathbf{B}_0 + \left(\nabla \times (\mathbf{B}_0 + \delta \mathbf{B})\right) \times \delta \mathbf{B}]$$ $$ = \frac{1}{\mu_0} [\left(\nabla \times \mathbf{B}_0 \right) \times \mathbf{B}_0 + \left(\nabla \times \delta \mathbf{B} \right) \times \mathbf{B}_0 + \left(\nabla \times \mathbf{B}_0 \right) \times \delta \mathbf{B} + \left(\nabla \times \delta \mathbf{B} \right) \times \delta \mathbf{B}]$$
Expanding the terms and neglecting higher-order perturbations, we get:
$$ \begin{align*} \rho_0 \left(\frac{\partial \mathbf{v}_0}{\partial t} + (\mathbf{v}_0 \cdot \nabla) \mathbf{v}_0\right) + \rho_0 \frac{\partial \delta \mathbf{v}}{\partial t} + \rho_0 ((\delta \mathbf{v} \cdot \nabla) \mathbf{v}_0 + (\mathbf{v}_0 \cdot \nabla) \delta \mathbf{v}) =& -\nabla p_0 - \nabla \delta p + \frac{1}{\mu_0} [\left(\nabla \times \mathbf{B}_0 \right) \times \mathbf{B}_0 + \left(\nabla \times \delta \mathbf{B} \right) \times \mathbf{B}_0 + \left(\nabla \times \mathbf{B}_0 \right) \times \delta \mathbf{B} + \left(\nabla \times \delta \mathbf{B} \right) \times \delta \mathbf{B}] \end{align*}$$
Linearizing (taking first order perturbations) the above equations,
$$\begin{align*} \rho_0 \frac{\partial \delta \mathbf{v}}{\partial t} &= -\nabla \delta p + \frac{1}{\mu_0} \left(\nabla \times \delta \mathbf{B}\right) \times \mathbf{B}_0 + \frac{1}{\mu_0} \left(\nabla \times \mathbf{B}_0\right) \times \delta \mathbf{B} \end{align*}$$
Then how to get (the last term of the equation including perturbed part of magnetic field) the linearized MHD equation as the 2nd equation as:
$$\begin{align*} \rho_0 \frac{\partial \delta \mathbf{v}}{\partial t} &= -\nabla \delta p + \frac{1}{\mu_0} \left(\nabla \times \delta \mathbf{B}\right) \times \mathbf{B}_0 \end{align*}$$