Quantum cNOT Gate (Classical XOR Gate)
A "Controlled NOT (cNOT) Gate" flips the 2nd qubit if the 1st qubit is $\left|1\right>$, and returns the 2nd qubit as-is if the 1st qubit is $\left|0\right>$. The 1st qubit is simply not changed.
The net effect of this gate is a classical XOR gate:
- It keeps the 1st qubit unchanged
- It outputs "the 1st qubit XOR the 2nd qubit" as the result of the 2nd qubit
In table form, the function looks like:
$$ \begin{array}{|c|c|} \hline \text{Input} & \text{Output} \\ \hline \begin{array}{cc}0 & 0\end{array} & \begin{array}{cc}0 & 0\end{array} \\ \hline \begin{array}{cc}0 & 1\end{array} & \begin{array}{cc}0 & 1\end{array} \\ \hline \begin{array}{cc}1 & 0\end{array} & \begin{array}{cc}1 & \color{red}{1}\end{array} \\ \hline \begin{array}{cc}1 & 1\end{array} & \begin{array}{cc}1 & \color{red}{0}\end{array} \\ \hline \end{array} $$
Therefore, an input:
$$\alpha\left|00\right>+\beta\left|01\right>+\gamma\left|10\right>+\delta\left|11\right>$$
is mapped to:
$$\alpha\left|00\right>+\beta\left|01\right>+\gamma\left|1\color{red}{1}\right>+\delta\left|1\color{red}{0}\right>$$
Or, in other words:
$$\alpha\left|00\right>+\beta\left|01\right>+\color{red}{\delta}\left|10\right>+\color{red}{\gamma}\left|11\right>$$
In matrix form, we need to find the all the $a_{ij}$'s that satisfy the following:
$$ \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \color{red}{\delta} \\ \color{red}{\gamma} \\ \end{pmatrix} $$
It is trivial to find the solution:
$$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \color{red}{0} & \color{red}{1} \\ 0 & 0 & \color{red}{1} & \color{red}{0} \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \color{red}{\delta} \\ \color{red}{\gamma} \\ \end{pmatrix} $$
Quantum AND Gate?
Similarly, if there exists a gate that mimics the classical AND gate, it should have the following net effect:
- It keeps the 1st qubit unchanged
- It outputs "the 1st qubit AND the 2nd qubit" as the result of the 2nd qubit
In table form, the function looks like:
$$ \begin{array}{|c|c|} \hline \text{Input} & \text{Output} \\ \hline \begin{array}{cc}0 & 0\end{array} & \begin{array}{cc}0 & 0\end{array} \\ \hline \begin{array}{cc}0 & 1\end{array} & \begin{array}{cc}0 & \color{red}{0}\end{array} \\ \hline \begin{array}{cc}1 & 0\end{array} & \begin{array}{cc}1 & 0\end{array} \\ \hline \begin{array}{cc}1 & 1\end{array} & \begin{array}{cc}1 & 1\end{array} \\ \hline \end{array} $$
Therefore, an input:
$$\alpha\left|00\right>+\beta\left|01\right>+\gamma\left|10\right>+\delta\left|11\right>$$
should be mapped to:
$$\alpha\left|00\right>+\beta\left|0\color{red}{0}\right>+\gamma\left|10\right>+\delta\left|11\right>$$
Or, in other words:
$$\color{red}{(\alpha+\beta)}\left|00\right>+\color{red}{0}\left|01\right>+\gamma\left|10\right>+\delta\left|11\right>$$
In matrix form, we need to find the all the $a_{ij}$'s that satisfy the following:
$$ \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \color{red}{\alpha+\beta} \\ \color{red}{0} \\ \gamma \\ \delta \\ \end{pmatrix} $$
It is trivial to find the solution:
$$ \begin{pmatrix} 1 & \color{red}{1} & 0 & 0 \\ 0 & \color{red}{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \color{red}{\alpha+\beta} \\ \color{red}{0} \\ \gamma \\ \delta \\ \end{pmatrix} $$
Quantum OR Gate?
Similarly, if there exists a gate that mimics the classical OR gate, it should have the following net effect:
- It keeps the 1st qubit unchanged
- It outputs "the 1st qubit OR the 2nd qubit" as the result of the 2nd qubit
In table form, the function looks like:
$$ \begin{array}{|c|c|} \hline \text{Input} & \text{Output} \\ \hline \begin{array}{cc}0 & 0\end{array} & \begin{array}{cc}0 & 0\end{array} \\ \hline \begin{array}{cc}0 & 1\end{array} & \begin{array}{cc}0 & 1\end{array} \\ \hline \begin{array}{cc}1 & 0\end{array} & \begin{array}{cc}1 & \color{red}{1}\end{array} \\ \hline \begin{array}{cc}1 & 1\end{array} & \begin{array}{cc}1 & 1\end{array} \\ \hline \end{array} $$
Therefore, an input:
$$\alpha\left|00\right>+\beta\left|01\right>+\gamma\left|10\right>+\delta\left|11\right>$$
should be mapped to:
$$\alpha\left|00\right>+\beta\left|01\right>+\gamma\left|1\color{red}{1}\right>+\delta\left|11\right>$$
Or, in other words:
$$\alpha\left|00\right>+\beta\left|01\right>+\color{red}{0}\left|10\right>+\color{red}{(\gamma+\delta)}\left|11\right>$$
In matrix form, we need to find the all the $a_{ij}$'s that satisfy the following:
$$ \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \color{red}{0} \\ \color{red}{\gamma+\delta} \\ \end{pmatrix} $$
It is trivial to find the solution:
$$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \color{red}{0} & 0 \\ 0 & 0 & \color{red}{1} & 1 \\ \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \\ \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \color{red}{0} \\ \color{red}{\gamma+\delta} \\ \end{pmatrix} $$
However, since:
$$ A = \begin{pmatrix} 1 & \color{red}{1} & 0 & 0 \\ 0 & \color{red}{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} $$
and
$$ B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \color{red}{0} & 0 \\ 0 & 0 & \color{red}{1} & 1 \\ \end{pmatrix} $$
are not unitary matrices, as shown by $\det(A) = \det(B) = 0 \ne 1$, they could not be implemented directly as a quantum logic gate.
I have read the answer here:
but it is not intuitive enough for me:
- to understand what the final solution is; and
- to visualize how it achieves the same result as the matrix $A$ and $B$ above.
Does anyone have any idea on how to implement "Classical AND" and "Classical OR" with an explanation in matrix form? Thanks!
a AND bI think. Just set it as0initially.0 XOR 0is0, and0 XOR 1is1. That is,c XOR (a AND b) = a AND bif you takecas0. Basically, set the ancillary qubit to $|0\rangle$ initially, and you'll get required output at the third "wire". – Sanchayan Dutta Apr 01 '19 at 17:43{a, b, c}to{a, b, c XOR (a AND b). To get back(a AND b), we can do aXOR cto the result. However, since the output is at the wire c, and qubits could not be copied, how could I do aXOR cafter that? Let's say if we set $c=\left|0\right>$, can we use another qubit $d=\left|0\right>$ instead of c, and do aXOR dto get the same result? – Siu Ching Pong -Asuka Kenji- Apr 01 '19 at 17:490 XOR x = xfor anyx. Thank you so much! – Siu Ching Pong -Asuka Kenji- Apr 01 '19 at 17:54