So, lets say for the family of the explicit Runge-Kutta methods: $$y_{n+1} = y_n + \sum_{i=1}^s b_i k_i$$
where, $$k_1 = hf(t_n, y_n)$$ $$k_2 = hf(t_n+c_2h, y_n+a_{21}k_1)$$ $$\vdots$$ $$k_s = hf(t_n+c_sh, y_n+a_{s1}k_1+a_{s2}k_2+\cdots+a_{s,s-1}k_{s-1})$$
Is there any high-order Runge-Kutta scheme (preferably more than 3rd order) where either all the nodes are found on $c_i=1,$ for $i=2,...,s$ OR if $c_m\neq{1},m=2...s$ then the weight on this node should be zero $(b_m=0)$?