I need to calculate these ratios:
$$\frac{\mathrm{B}_{x,y}(\alpha + 1,\beta)}{\mathrm{B}_{x,y}(\alpha,\beta)} \tag{1}$$
where $\alpha,\beta > 0$ and $0\le x\le y \le 1$. Here $\mathrm{B}_{x,y}(\alpha,\beta)$ is the incomplete Beta function, defined as:
$$\mathrm{B}_{x,y}(\alpha,\beta) = \int_x^y t^{\alpha-1}(1-t)^{\beta-1}\mathrm{d}t$$
For large values of the parameters $\alpha,\beta$ , the numerator and the denominator can be very $\mathrm{B}_{x,y}(\alpha,\beta)$ can get very large or very small, resulting in over/underflow.
Is there a way that I can compute the ratio (1) avoiding these over/underflows?