Let's denote by $\otimes,\oplus,\ominus$ (I was lazy trying to get circled version of division operator) the floating-point analogs of exact multiplication ($\times$), addition ($+$), and subtraction ($-$), respectively. We'll assume (IEEE-754) that for all of them
$$
[x\oplus y]=(x+ y)(1+\delta_\oplus),\quad |\delta_\oplus|\le\epsilon_\mathrm{mach},
$$
where $\epsilon_\mathrm{mach}$ is the machine epsilon giving an upper bound on the relative error due to rounding off.
We will also use the following lemma (assuming all $|\delta_i|\le\epsilon_\mathrm{mach}$, and $m$ is not too large) that can be easily proven:
$$
\prod\limits_{i=1}^{m}(1+\delta_i)=1+\theta(m),\quad |\theta(m)|\le\frac{m\epsilon_\mathrm{mach}}{1-m\epsilon_\mathrm{mach}}
$$
Let's define the true function $f$ that operates on real numbers $x,y,z$ as
$$
f(x,y,z)=(x\times z)-(y\times z)
$$
and two versions of the function implementation in IEEE-compliant floating-point arithmetic as $\tilde{f_1}$ and $\tilde{f_2}$ that operate on floating-point representations $\tilde{x}=x(1+\delta_x),\tilde{y},\tilde{z}$, as follows:
$$
\tilde{f_1}(\tilde{x},\tilde{y},\tilde{z})=(\tilde{x}\otimes\tilde{z})\ominus(\tilde{y}\otimes\tilde{z}),
$$
$$
\tilde{f_2}(\tilde{x},\tilde{y},\tilde{z})=(\tilde{x}\ominus\tilde{y})\otimes\tilde{z}.
$$
Error analysis for $\tilde{f_1}$:
$$
\begin{aligned}
\tilde{f_1}&=\Big(\underbrace{\big(x(1+\delta_x)\times z(1+\delta_z)\big)\big(1+\delta_{\otimes_{xz}}\big)}_{(\tilde{x}\otimes\tilde{z})}-\underbrace{\big(y(1+\delta_y)\times z(1+\delta_z)\big)\big(1+\delta_{\otimes_{yz}}\big)}_{(\tilde{y}\otimes\tilde{z})}\Big)\Big(1+\delta_{\ominus}\Big)\\
&=xz(1+\delta_x)(1+\delta_z)(1+\delta_{\otimes_{xz}})(1+\delta_\ominus)-yz(1+\delta_y)(1+\delta_z)(1+\delta_{\otimes_{yz}})(1+\delta_\ominus)\\
&=xz(1+\theta_{xz,1})-yz(1+\theta_{yz,1}).
\end{aligned}
$$
Here, $|\theta_{xz,1}|,|\theta_{yz,1}|\le\frac{4\epsilon_\mathrm{mach}}{1-4\epsilon_\mathrm{mach}}$.
Similarly, for $\tilde{f_2}$
$$
\begin{aligned}
\tilde{f_2}&=\Bigg(\Big(\big( x(1+\delta_x)-y(1+\delta_y \big)\big(1+\delta_{\ominus_{xy}}\big)\Big)\times \Big(z(1+\delta_z)\Big)\Bigg)\Bigg(1+\delta_{\otimes}\Bigg)\\
&=xz(1+\delta_x)(1+\delta_z)(1+\delta_{\ominus_{xy}})(1+\delta_\otimes)-yz(1+\delta_y)(1+\delta_z)(1+\delta_{\ominus_{xy}})(1+\delta_\otimes)\\
&=xz(1+\theta_{x,2})-yz(1+\theta_{y,2}).
\end{aligned}
$$
Here, $|\theta_{x,2}|,|\theta_{y,2}|\le\frac{4\epsilon_\mathrm{mach}}{1-4\epsilon_\mathrm{mach}}$.
So, for both $\tilde{f_1}$ and $\tilde{f_2}$ we got expressions of the same type, thus I do not see why one implementation would be preferred to another from a numerical point of view (except the fact that $\tilde{f_2}$ performs only 2 floating-point operations compared to $\tilde{f_1}$).
Computing the relative error will show, that the problem comes from the fact that $x$ and $y$ can be very close (cancellation).
$$
\begin{aligned}
\frac{|\tilde{f_1}-f|}{|f|}&=\frac{|xz+xz\theta_{xz,1}-yz-yz\theta_{yz,1}-(xz-yz)|}{|xz-yz|}=\frac{|x\theta_{xz,1}-y\theta_{yz,1}|}{|x-y|}\\
&\le\frac{|x|+|y|}{|x-y|}\frac{4\epsilon_\mathrm{mach}}{1-4\epsilon_\mathrm{mach}},
\end{aligned}
$$
$$
\begin{aligned}
\frac{|\tilde{f_2}-f|}{|f|}&=\frac{|xz+xz\theta_{x,2}-yz-yz\theta_{y,2}-(xz-yz)|}{|xz-yz|}=\frac{|x\theta_{x,2}-y\theta_{y,2}|}{|x-y|}\\
&\le\frac{|x|+|y|}{|x-y|}\frac{4\epsilon_\mathrm{mach}}{1-4\epsilon_\mathrm{mach}}.
\end{aligned}
$$
Slight differences between $\theta$'s might make one of the two numerical implementations marginally better or worse depending on $x,y,z$. However, I doubt it can be of any significance.
The result totally makes sense, because no matter what, if you have to compute $(x-y)$, when $x$ and $y$ are close enough in values (for the precision you work with) using floating-point arithmetic, no scaling will significantly help you: you are already in trouble.
NB: All discussion above assumes no overflow or underflow, i.e. $x,y,z,f(x,y,z)\in\mathbb F_0$, $\mathbb F_0$ being the set of all normal floating-point numbers.