I want to solve the system of Schrodinger-Poisson equations numerically:
\begin{align} \chi_1''(r) + \frac{2}{r}\chi_1'(r)&=2U(r)\chi_1(r) \\ \chi_2''(r) + \frac{2}{r}\chi_2'(r)&=2\left(\frac{m_2}{m_1}\right)^2U(r)\chi_2(r) \\ U''(r)+ \frac{2}{r}U'(r) &= \chi_1^2(r) + \left(\frac{m_2}{m_1}\right)^2 \chi_2^2(r) \label{eq:sys4} \end{align} where $\chi_1(r)$ and $\chi_2(r)$ are scalar fields, U(r) is the gravitaional potential (shifted by some constant). This problem is a BVP, where $\chi_1(r)$ and $\chi_2(r)$ approach zero as r tends to infinity, and U(r) approaches some constant, but I can rewrite the problem as an IVP where the initial conditions are (for $\delta \ll 1$):
\begin{align} \chi_1(\delta) &=1 + \frac{U_0}{3}\delta^2\\ \chi_1'(\delta) &=2\frac{U_0}{3}\delta + \frac{1}{15} \left( 1 + 2U_0^2 + \left(\frac{m_2}{m_1}\right)^2 B_0^2 \right) \delta^3\\ \chi_2(\delta) &= B_0 \left(1 + \frac{1}{3}(U_0 + \Delta \gamma) \left(\frac{m_2}{m_1}\right)^2 \delta^2\right)\\ \chi_2'(\delta)&= \frac{B_0}{3}\left(\frac{m_2}{m_1}\right)^2 \left( 2(U_0 +\Delta \gamma ) \delta + \frac{1}{5}\left(1 + \left(\frac{m_2}{m_1}\right)^2(2(U_0 + \Delta \gamma)^2 + B_0^2)\right)\delta^3 \right) \\ U(\delta) &= U_0 + \frac{1}{6}\left(1 + \left(\frac{m_2}{m_1}\right)^2 B_0^2 \right) \delta^2 \\ U'(\delta) &= \frac{1}{3}\left(1 + \left(\frac{m_2}{m_1}\right)^2 B_0^2 \right)\delta + \frac{2}{15}\left(U_0 + \left(\frac{m_2}{m_1}\right)^4(U_0 + \Delta \gamma)B_0^2\right)\delta^3 \label{eq:sys5} \end{align}
I want to find the solution without any nodes (the ground state solution). When calculating, I can fix $B_0$ and $\frac{m_2}{m_1}$ to be some constant, and now I have to vary two parameters, $\Delta \gamma$ and $U_0$ in order to obtain the nodeless solution.
Can someone suggest me an algorithm that could solve this system of equations and obtain the values of $\Delta \gamma$ and $U_0$ for which the solution is nodeless?
The version with only one field $\chi$ can be solved using the shooting method where the parameter that is varied is $U_0$ (this is the only parameter in that case). In the case of the two fields, the shooting method doesn't look feasible.