I want to alternately shade the rows in my table. I am aware of How to alternately shade rows in a table and similar questions. However, as my table is long and needs to be aligned very neatly in order to not be totally confusion, I make heavy use of the self-defined delimiters for cells via @{}. The formatting gets totally screwed when I try the solutions proposed elsewhere. I suppose the @{} is what trips up \rowcolors. How can I color the rows without screwing up the formatting?
A minimal example with my table is
\documentclass[a4paper]{scrartcl}
\usepackage{booktabs}
\usepackage[table]{xcolor}
\begin{document}
\rowcolors{2}{white}{gray!15} % <--- this is the solution from the other questions
\begin{center}
\begin{tabular} {cl@{}r@{\,}r@{\,}r@{\,}r@{\,}r@{}l@{\qquad}l@{}r@{\,}r@{\,}r@{\,}r@{}lc@{\qquad}l@{}r@{\,}r@{)(}r@{}llc}
\toprule
& \multicolumn{7}{c}{\(SO(10)\) } & \multicolumn{7}{c}{\(SU(5)\)} & \multicolumn{6}{c}{\(\mathcal G_\mathrm{SM}\)} & \\
Level & \multicolumn{7}{c}{weight} & \multicolumn{6}{l}{weight} & \(\mathrm{IR}_x\) & \multicolumn{5}{c}{weight} & \(\mathrm{IR}_Y\) & SM state \\ \midrule
0 & (&0& 0& 0& 0& 1&) & (&0& 1& 0& 0&) & \(\mathbf{10}_1\) & (&1&0&1&) & \(\mathbf{3} \times \mathbf{2}_\frac{1}{6}\)&\(u_l\)\\
1 & (&0& 0& 1& 0& -1&) & (&0& 0& 0& 1&) & \(\overline{\mathbf 5}_{-3}\) & (&0&1&0&) & \(\overline{\mathbf{3}} \times \mathbf 1_\frac{1}{3}\) & \(d^c_r\)\\
2 & (&0& 1& -1& 1& 0&) & (&1& -1& 1& 0&) & \(\mathbf{10}_1\) & (&0&1&0&) & \(\overline{\mathbf{3}} \times \mathbf 1_{-\frac{2}{3}}\)& \(u^c_r\)\\
3 & (&1& -1& 0& 1& 0&) & (&0& 0& 1& -1&) & \(\overline{\mathbf 5}_{-3}\) & (&0&0&1&) & \(\mathbf{1} \times \mathbf 2_{-\frac{1}{2}}\) &\(\nu_l\)\\
3 & (&0& 1& 0& -1& 0&) & (&1& 0& -1& 1&) & \(\mathbf{10}_1\) & (&1&0&-1&) & \(\mathbf{3} \times \mathbf{2}_{\frac{1}{6}}\) &\(d_l\)\\
4 & (&-1& 0& 0& 1& 0&) & (&-1& 0& 1&0&) & \(\mathbf{10}_1\) & (&-1&1&1&) & \(\mathbf{3} \times \mathbf{2}_{\frac{1}{6}}\) &\(u_l\)\\
4 & (&1& -1& 1& -1& 0&) & (&0& 1& -1& 0&) & \(\overline{\mathbf 5}_{-3}\) & (&1&-1&0&) & \(\overline{\mathbf{3}} \times \mathbf{1}_\frac{1}{3}\) &\(d^c_r\)\\
5 & (&-1& 0& 1& -1& 0&) & (&-1& 1& -1& 1&) & \(\mathbf{10}_1\) & (&0&0&0&) & \(\mathbf{1} \times \mathbf{1}_1\) &\(e^c_r\)\\
5 & (&1& 0& -1& 0& 1&) & (&1& 0& 0& -1&) & \(\mathbf{10}_1\) & (&1&-1&0&) & \(\overline{\mathbf{3}} \times \mathbf{1}_{-\frac{2}{3}}\)& \(u^c_r\)\\
6 & (&-1& 1& -1& 0& 1&) & (&0& 0& 0& 0&) & \(\mathbf 1_5\) & (&0&0&0&) & \(\mathbf 1 \times \mathbf 1_0\) &\(\nu_r\)\\
6 & (&1& 0& 0& 0& -1&) & (&1& -1& 0& 0&) & \(\overline{\mathbf 5}_{-3}\) & (&0&0&-1&) & \(\mathbf 1 \times \mathbf 2_{-\frac{1}{2}}\) &\(e_l\)\\
7 & (&0& -1& 0& 0& 1&) & (&-1& 1& 0& -1&) & \(\mathbf{10}_1\) & (&0&-1&1&) & \(\mathbf 3 \times \mathbf 2_\frac{1}{6}\) & \(u_l\)\\
7 & (&-1& 1& 0& 0& -1&) & (&0& -1& 0& 1&) & \(\mathbf{10}_1\) & (&-1&1&-1&) & \(\mathbf{3} \times \mathbf 2_\frac{1}{6}\) &\(d_l\)\\
8 & (&0& -1& 1& 0& -1&) & (&-1& 0& 0& 0&) & \(\overline{\mathbf 5}_{-3}\) & (&-1&0&0&) & \(\overline{\mathbf{3}} \times \mathbf{1}_\frac{1}{3}\) &\(d^c_r\)\\
9 & (&0& 0& -1& 1& 0&) & (&0& -1& 1& -1&) & \(\mathbf{10}_1\) & (&-1&0&0&) & \(\overline{\mathbf{3}}\times \mathbf{1}_{-\frac{2}{3}}\) &\(u^c_r\)\\
10 & (&0& 0& 0& -1& 0&) & (&0& 0& -1& 0&) & \(\mathbf{10}_1\) & (&0&-1&-1&) & \(\mathbf{3} \times \mathbf 2_\frac{1}{6}\)& \(d_l\)\\
\bottomrule
\end{tabular}
\end{center}
\end{document}
