I can do a path integral like this:
$$\oint \limits_{C(S)} fd{\textbf l}$$
But how can I do a surface integral? The output should look something the surface integrals below, but hopefully better:

I can do a path integral like this:
$$\oint \limits_{C(S)} fd{\textbf l}$$
But how can I do a surface integral? The output should look something the surface integrals below, but hopefully better:

A version where the limits are underneath the integral signs:
\documentclass{article}
\usepackage{amsmath,esint}
\newcommand*\VF[1]{\mathbf{#1}}
\newcommand*\dif{\mathop{}\!\mathrm{d}}
\begin{document}
\begin{align*}
\iiint\limits_V (\nabla \cdot \VF{F}) \dif V
&= \oiint\limits_{S(V)} \VF{F} \cdot \hat{\VF{n}} \dif S\\
\iiint\limits_V (\nabla \times \VF{F}) \dif V
&= \oiint \hat{\VF{n}} \times \VF{F} \dif S
\end{align*}
\end{document}

A version where the limits are beside the integral signs:
\documentclass{article}
\usepackage{amsmath,esint}
\newcommand*\VF[1]{\mathbf{#1}}
\newcommand*\dif{\mathop{}\!\mathrm{d}}
\begin{document}
\begin{align*}
\iiint_{V} (\nabla \cdot \VF{F}) \dif V
&= \oiint_{S(V)} \VF{F} \cdot \hat{\VF{n}} \dif S\\
\iiint_{V} (\nabla \times \VF{F}) \dif V
&= \oiint \hat{\VF{n}} \times \VF{F} \dif S
\end{align*}
\end{document}

Note: As pointed out by Charles Staats, the upright d in a differential is not common notation in all branches of science; for an italic d, simply use a d without \mathrm.
\def instead of \(re)newcommand.
– kiss my armpit
Sep 21 '13 at 16:17
d in e.g. dV upright (as in this answer) rather than the default italic. To get italic, simply replace \mathrm{d} by d in the definition of the \dif command; the command is still useful to adjust the spacing.
– Charles Staats
Sep 21 '13 at 21:28
\Int<n>_^[d-var]{integrand} macro for this.) I will say that I've never seen a field that prefers an italicized d (although I have seen it in a \mathbb-like style).
– Sean Allred
Sep 22 '13 at 04:34
\documentclass{article}
\usepackage{amsmath,esint}
\begin{document}
\begin{align*}
\iiint\limits_V(\nabla \cdot \mathbf{F}) dV
& = \oiint \limits_{S(V)} \mathbf{F \cdot \hat{n}} dS \\
\iiint\limits_V(\nabla \times \mathbf{F}) dV
& = \oiint \limits_{S(V)} \mathbf{\hat{n} \times F} dS \\
\iiint\limits_V(\nabla f) dV
& = \oiint\limits_{S(V)}\mathbf{\hat{n}}f dS
\end{align*}
\end{document}

amsmath packages to get the align environment?
– Svend Tveskæg
Sep 22 '13 at 05:01
d for differentials. I also just confirmed that Hartshorne's Algebraic Geometry and Beauville's Complex Algebraic Surfaces use italicized d. I don't want to waste too much time on this, but of the five books on my bookshelf I have checked, all five of them used an italicized d for differentials.
– Charles Staats
Sep 22 '13 at 22:23