This is what I generated for a set of equivalent definitions of positive semi-definiteness.
\documentclass[10pt]{article}
% for fancy math
\usepackage{amsmath}
% rank operator
\DeclareMathOperator*{\rank}{rank}
% Matrix transpose
\newcommand{\trans}[1]{\ensuremath{{#1}^\top}}
% for extra space at the end of abbreviation
\usepackage{xspace}
% positive semi-definite
\newcommand{\psd}{\textsc{psd}\xspace}
% boldface uppercase letters for matrices
\newcommand{\Abf}{\ensuremath{\mathbf A}}
\newcommand{\Bbf}{\ensuremath{\mathbf B}}
% boldface lowercase letters for vectors
\newcommand{\xbf}{\ensuremath{\mathbf x}}
% for math blackboard font
\usepackage{amssymb}
% set of real numbers
\newcommand{\Rbb}{\ensuremath{\mathbb R}}
\usepackage{palatino}
\usepackage[sc]{mathpazo}
\begin{document}
\noindent
For any real symmetric matrcies $\Abf$ such that $\rank(\Abf_{n\times n})=r$,
the following statements are equivalent
and any one of them can serve as the definition of
\emph{positive semi-definite} (\psd) matrices.
\begin{itemize}
\item $\trans\xbf \Abf\xbf \geq 0$ for any non-zero vector
$\xbf\in\Rbb^{n\times 1}$.
\hfill\refstepcounter{equation}\textup{(\theequation)}%
\item All the $n$ eigenvalues of $\Abf$ are non-negative.
\hfill\refstepcounter{equation}\textup{(\theequation)}%
\item $\Abf=\trans\Bbf \Bbf$ for some $\Bbf$ with $\rank(\Bbf)=r$.
\hfill\refstepcounter{equation}\textup{(\theequation)}%
\end{itemize}
\end{document}

As these definitions are all equivalent, I'd like to number them as (1a), (1b), and (1c) instead of (1), (2), (3). I'm not sure whether I can use subequations environment as I want to keep three different definitions as a text in an itemized list.
Any suggestions?
