6

I have the equation in the twocolumn view

\documentclass[twocolumn]{article}
\usepackage{amsmath}
\begin{document}   

\begin{equation}
\begin{aligned}  
X(m) &= \frac{b-a}{N} \sum_{k=1}^{N} e^{-i2\pi (k-1)(m-1)/N} x(a + (b-a)\frac{k-1}{N}) \\ 
&= \frac{b-a}{N} \sum_{k=1}^{N} e^{-i2\pi (a + (b-a)\frac{k-1}{N})*\frac{m-1}{b-a}} \\
& x(a + (b-a)\frac{k-1}{N})e^{i2\pi a \frac{m-1}{b-a}} \\
& \xrightarrow{ N\to\infty } \int_{a}^{b} e^{-2\pi t \frac{m-1}{b-a}} x(t) dt\\
& e^{i2\pi a \frac{m-1}{b-a}} Qx(\frac{m-1}{b-a}). 
\end{aligned}
\end{equation}
\end{document}

Output

enter image description here

How would you present this equation in a twocolumn view?

Mico
  • 506,678

3 Answers3

11

You should be using split not align inside equation. Introducing new variables for large repeating expressions and shifting your indexing by one will reduce the size of the equation. Finally I introduce an eqbreak command to shift a split expression:

Sample output

\documentclass[twocolumn]{article}
\usepackage{amsmath, amsfonts, amssymb, textcomp}

\newcommand{\eqbreak}[1][2]{\\&\hskip#1em}

\begin{document}   

\begin{equation}
  \begin{split}  
    X(m+1)
    &= \frac{b-a}N \sum_{k=0}^{N-1} e^{-i2\pi km/N}\,  x(a_k) \\
    &= \frac{b-a}N \sum_{k=0}^{N-1} e^{-i2\pi a_km/(b-a)} \eqbreak[6]
    \times x(a_k)\,e^{i2\pi a m/(b-a)} \\
    &\xrightarrow{N\to\infty} e^{i2\pi a m/(b-a)} \,Qx\Bigl(\frac
    m{b-a}\Bigr),
  \end{split}
\end{equation}
where \( a_k = a + (b-a)k/N \).
\end{document}
Mico
  • 506,678
Andrew Swann
  • 95,762
3

Just for fun!

\documentclass{article}
\usepackage[a4paper,margin=2cm,twocolumn]{geometry}
\usepackage{mathtools}
\begin{document}
\begin{equation}
\begin{split}  
X(m) 
&=
\!
\begin{multlined}[t]
    \frac{b-a}{N} \sum_{k=1}^{N} \Bigg[  x\left(a + \frac{k-1}{N}(b-a)\right)\\
    \times e^{-\frac{2\pi i (k-1)(m-1)}{N}} \Bigg]
\end{multlined}\\ 
&=
\!
\begin{multlined}[t]
    \frac{b-a}{N} \sum_{k=1}^{N}\Bigg[ x\left(a + \frac{k-1}{N}(b-a)\right) \\
    \times e^{2\pi i a \frac{m-1}{b-a}}\\
    \times e^{-2\pi i \left(a + \frac{k-1}{N}(b-a)\right)\times \frac{m-1}{b-a}}\Bigg]
\end{multlined}\\
& \xrightarrow{ N\to\infty }
\!
\begin{multlined}[t] 
    e^{2\pi i a \frac{m-1}{b-a}} \\
    \times \int_{a}^{b} e^{2\pi i a \frac{m-1}{b-a}} Qx\left(\frac{m-1}{b-a}\right).
\end{multlined}
\end{split}
\end{equation}
\end{document}

enter image description here

Mico
  • 506,678
3

I would propose you split the first two lines at a reasonably natural point. I would use explicit sizing instructions for the parentheses, and use \exp(...) expressions.

enter image description here

\documentclass[twocolumn]{article}
\usepackage{amsmath, amsfonts, amssymb, textcomp}
\begin{document}
\begin{align}
&X(m) \notag\\
&= \frac{b-a}{N} \sum_{k=1}^{N} \exp\bigl(-i2\pi (k-1)(m-1)/N\bigr) \notag\\
&\qquad  \times x\Bigl[a + (b-a)\frac{k-1}{N}\Bigr] \\
&= \frac{b-a}{N} \sum_{k=1}^{N} \exp\Bigl[-i2\pi \Bigl(a + (b-a)\frac{k-1}{N}\Bigr)
 \frac{m-1}{b-a}\Bigr] \notag \\
&\qquad  \times x\Bigl(a + (b-a)\frac{k-1}{N}\Bigr) 
        \exp\Bigl(i2\pi a \frac{m-1}{b-a}\Bigr) \\
& \xrightarrow{ N\to\infty } \exp\Bigl(i2\pi a \frac{m-1}{b-a}\Bigr) 
Qx\Bigl(\frac{m-1}{b-a}\Bigr)\,.
\end{align}
\end{document}
Mico
  • 506,678