I have been losing sleep lately as to how to make the most professional looking problem set (math and physics oriented) that is both easy to read and concise (i.e. no title pages), and yet is beautiful/elegant and has a good sense of style and professionalism (i.e. it looks like it could be from one of those great books Springer Graduate Texts).
Here is my latest shot at this.

Source:
% ***********************************************************
% ******************* PHYSICS HEADER ************************
% ***********************************************************
% Version 2
\documentclass[12pt]{article}
\usepackage{amsmath} % AMS Math Package
\usepackage{amsthm} % Theorem Formatting
\usepackage{amssymb} % Math symbols such as \mathbb
\usepackage{graphicx} % Allows for eps images
\usepackage[dvips,letterpaper,margin=1in,bottom=0.7in]{geometry}
\usepackage{tensor}
% Sets margins and page size
\usepackage{amsmath}
\renewcommand{\labelenumi}{(\alph{enumi})} % Use letters for enumerate
% \DeclareMathOperator{\Sample}{Sample}
\let\vaccent=\v % rename builtin command \v{} to \vaccent{}
\usepackage{enumerate}
\renewcommand{\v}[1]{\ensuremath{\mathbf{#1}}} % for vectors
\newcommand{\gv}[1]{\ensuremath{\mbox{\boldmath$ #1 $}}}
% for vectors of Greek letters
\newcommand{\uv}[1]{\ensuremath{\mathbf{\hat{#1}}}} % for unit vector
\newcommand{\abs}[1]{\left| #1 \right|} % for absolute value
\newcommand{\avg}[1]{\left< #1 \right>} % for average
\let\underdot=\d % rename builtin command \d{} to \underdot{}
\renewcommand{\d}[2]{\frac{d #1}{d #2}} % for derivatives
\newcommand{\dd}[2]{\frac{d^2 #1}{d #2^2}} % for double derivatives
\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
% for partial derivatives
\newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial #2^2}}
% for double partial derivatives
\newcommand{\pdc}[3]{\left( \frac{\partial #1}{\partial #2}
\right)_{#3}} % for thermodynamic partial derivatives
\newcommand{\ket}[1]{\left| #1 \right>} % for Dirac bras
\newcommand{\bra}[1]{\left< #1 \right|} % for Dirac kets
\newcommand{\braket}[2]{\left< #1 \vphantom{#2} \right|
\left. #2 \vphantom{#1} \right>} % for Dirac brackets
\newcommand{\matrixel}[3]{\left< #1 \vphantom{#2#3} \right|
#2 \left| #3 \vphantom{#1#2} \right>} % for Dirac matrix elements
\newcommand{\grad}[1]{\gv{\nabla} #1} % for gradient
\let\divsymb=\div % rename builtin command \div to \divsymb
\renewcommand{\div}[1]{\gv{\nabla} \cdot \v{#1}} % for divergence
\newcommand{\curl}[1]{\gv{\nabla} \times \v{#1}} % for curl
\let\baraccent=\= % rename builtin command \= to \baraccent
\renewcommand{\=}[1]{\stackrel{#1}{=}} % for putting numbers above =
\providecommand{\wave}[1]{\v{\tilde{#1}}}
\providecommand{\fr}{\frac}
\providecommand{\RR}{\mathbb{R}}
\providecommand{\NN}{\mathbb{N}}
\providecommand{\seq}{\subseteq}
\providecommand{\e}{\epsilon}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}[section]
\newtheorem{axiom}{Axiom}[section]
\newtheorem{p}{Problem}[section]
\usepackage{cancel}
\newtheorem*{lem}{Lemma}
\theoremstyle{definition}
\newtheorem*{dfn}{Definition}
\newenvironment{s}{%\small%
\begin{trivlist} \item \textbf{Solution}. }{%
\hspace*{\fill} $\blacksquare$\end{trivlist}}%
% ***********************************************************
% ********************** END HEADER *************************
% ***********************************************************
\begin{document}
{\noindent\Huge\bf \\[0.5\baselineskip] {\fontfamily{cmr}\selectfont Problem Set VIII} }\\[2\baselineskip] % Title
{ {\bf \fontfamily{cmr}\selectfont Physics 15c}\\ {\textit{\fontfamily{cmr}\selectfont November 7, 2013}}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {\large \textsc{david roberts}\footnote{With Elizabeth Petrik}} % Author name
\\[1.4\baselineskip]
\section{Optical Activity and LCDs}
\emph{Some materials have a property called "optical activity,” that is, for circularly polarized light, their index of refraction (and therefore their wavelength in the medium) depends on whether the light is right- or left-circularly polarized. The EM waves propagating in the $+\uv{z}$ direction inside such a medium can therefore be described by}
\[\v{E}(z,t)=E_L(\uv{x}+i\uv{y})e^{i(k_Lz-\omega t)} +E_R(\uv{x}-i\uv{y})e^{i(k_Rz-\omega t)}\tag{1}\]
\emph{where $E_L$, $E_R$, $k_L$, and $k_R$ are the amplitudes and wavenumbers of the left- and right-handed electric field components, and $\uv{x}$ and $\uv{y}$ are the unit vectors pointing in the $+\uv{x}$- and $+\uv{y}$-direction, respectively.}
\begin{p} Suppose that the incoming wave at $z = 0$ is linearly polarized in the x-direction, i.e.,
\[\v{E}(0,t) = E_0e^{-i\omega t}\uv{x} \tag{2}\]
Calculate $E_L$ and $E_R$.
\end{p}
\begin{s} We evaluate (1) at $z=0$ and set the resulting expression equal to (2), hereby solving for $E_L$ and $E_R$:
\begin{align*}
\v{E}(0,t)&=E_L(\uv{x}+i\uv{y})e^{-i\omega t)} +E_R(\uv{x}-i\uv{y})e^{-i\omega t}\tag{(1) with $z=0$}\\
&=[(E_L+E_R)\uv{x}+(E_L-E_R)i\uv{y})]e^{-i\omega t}=E_0e^{-i\omega t}\uv{x}
\end{align*}
\end{s}
\end{document}
A previous iteration:

Source:
% ***********************************************************
% ******************* PHYSICS HEADER ************************
% ***********************************************************
% Version 2
\documentclass[11pt]{article}
\usepackage{amsmath} % AMS Math Package
\usepackage{amsthm} % Theorem Formatting
\usepackage{amssymb} % Math symbols such as \mathbb
\usepackage{graphicx} % Allows for eps images
\usepackage[dvips,letterpaper,margin=1in,bottom=0.7in]{geometry}
\usepackage{tensor}
% Sets margins and page size
\usepackage{amsmath}
\makeatletter % Need for anything that contains an @ command
\renewcommand{\maketitle} % Redefine maketitle to conserve space
{ \begingroup \vskip 10pt \begin{center} \Huge {\bf \@title}
\vskip 10pt \large \@author \hskip 20pt \@date \end{center}
\vskip 10pt \endgroup \setcounter{footnote}{0} }
\makeatother % End of region containing @ commands
\renewcommand{\labelenumi}{(\alph{enumi})} % Use letters for enumerate
% \DeclareMathOperator{\Sample}{Sample}
\let\vaccent=\v % rename builtin command \v{} to \vaccent{}
\usepackage{enumerate}
\renewcommand{\v}[1]{\ensuremath{\mathbf{#1}}} % for vectors
\newcommand{\gv}[1]{\ensuremath{\mbox{\boldmath$ #1 $}}}
% for vectors of Greek letters
\newcommand{\uv}[1]{\ensuremath{\mathbf{\hat{#1}}}} % for unit vector
\newcommand{\abs}[1]{\left| #1 \right|} % for absolute value
\newcommand{\avg}[1]{\left< #1 \right>} % for average
\let\underdot=\d % rename builtin command \d{} to \underdot{}
\renewcommand{\d}[2]{\frac{d #1}{d #2}} % for derivatives
\newcommand{\dd}[2]{\frac{d^2 #1}{d #2^2}} % for double derivatives
\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
% for partial derivatives
\newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial #2^2}}
% for double partial derivatives
\newcommand{\pdc}[3]{\left( \frac{\partial #1}{\partial #2}
\right)_{#3}} % for thermodynamic partial derivatives
\newcommand{\ket}[1]{\left| #1 \right>} % for Dirac bras
\newcommand{\bra}[1]{\left< #1 \right|} % for Dirac kets
\newcommand{\braket}[2]{\left< #1 \vphantom{#2} \right|
\left. #2 \vphantom{#1} \right>} % for Dirac brackets
\newcommand{\matrixel}[3]{\left< #1 \vphantom{#2#3} \right|
#2 \left| #3 \vphantom{#1#2} \right>} % for Dirac matrix elements
\newcommand{\grad}[1]{\gv{\nabla} #1} % for gradient
\let\divsymb=\div % rename builtin command \div to \divsymb
\renewcommand{\div}[1]{\gv{\nabla} \cdot \v{#1}} % for divergence
\newcommand{\curl}[1]{\gv{\nabla} \times \v{#1}} % for curl
\let\baraccent=\= % rename builtin command \= to \baraccent
\renewcommand{\=}[1]{\stackrel{#1}{=}} % for putting numbers above =
\providecommand{\wave}[1]{\v{\tilde{#1}}}
\providecommand{\fr}{\frac}
\providecommand{\RR}{\mathbb{R}}
\providecommand{\NN}{\mathbb{N}}
\providecommand{\seq}{\subseteq}
\providecommand{\e}{\epsilon}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}[section]
\newtheorem{axiom}{Axiom}[section]
\newtheorem{p}{Problem}[section]
\usepackage{cancel}
\newtheorem*{lem}{Lemma}
\theoremstyle{definition}
\newtheorem*{dfn}{Definition}
\newenvironment{s}{%\small%
\begin{trivlist} \item \textbf{Solution}. }{%
\hspace*{\fill} $\blacksquare$\end{trivlist}}%
% ***********************************************************
% ********************** END HEADER *************************
% ***********************************************************
\begin{document}
\title{Physics 15c HW 4}
\author{David Roberts, with Nicki Charles}
\date{10/3/13}
\maketitle
\section{Optical Activity and LCDs}
Some materials have a property called "optical activity,” that is, for circularly polarized light, their index of refraction (and therefore their wavelength in the medium) depends on whether the light is right- or left-circularly polarized. The EM waves propagating in the $+\uv{z}$ direction inside such a medium can therefore be described by
\[\v{E}(z,t)=E_L(\uv{x}+i\uv{y})e^{i(k_Lz-\omega t)} +E_R(\uv{x}-i\uv{y})e^{i(k_Rz-\omega t)}\tag{1}\]
where $E_L$, $E_R$, $k_L$, and $k_R$ are the amplitudes and wavenumbers of the left- and right-handed electric field components, and $\uv{x}$ and $\uv{y}$ are the unit vectors pointing in the $+\uv{x}$- and $+\uv{y}$-direction, respectively.
\begin{p} Suppose that the incoming wave at $z = 0$ is linearly polarized in the x-direction, i.e.,
\[\v{E}(0,t) = E_0e^{-i\omega t}\uv{x} \tag{2}\]
Calculate $E_L$ and $E_R$.
\end{p}
\begin{s} We evaluate (1) at $z=0$ and set the resulting expression equal to (2), hereby solving for $E_L$ and $E_R$:
\begin{align*}
\v{E}(0,t)&=E_L(\uv{x}+i\uv{y})e^{-i\omega t)} +E_R(\uv{x}-i\uv{y})e^{-i\omega t}\tag{(1) with $z=0$}\\
&=[(E_L+E_R)\uv{x}+(E_L-E_R)i\uv{y})]e^{-i\omega t}=E_0e^{-i\omega t}\uv{x}
\end{align*}
\end{s}
\end{document}
Please, guys, I'm more interested in what you all have settled on over the years. I need an influx of artistic ideas and therefore I call on the community to summon forth its best work.
I hope many will find this relevant.
amsartclass to do this kind of job. – Sigur Nov 06 '13 at 20:23Some materials have a property called "optical activity,”has the second set of quotation marks getting swallowed by LaTeX. You need to use\and '' to make them display properly. – alexwlchan Nov 06 '13 at 22:07skrapportdocument class, but the class itself is getting a bit out of hand. See 1, 2, 3 for samples of varying correctness. It automatically includesskmath, which provides useful math shorthands. – You Nov 07 '13 at 00:58